Yet Another Sequence Encoder - Encode sequences to vector of vector in python !

Overview

Build Status

Yase

Yet Another Sequence Encoder - encode sequences to vector of vectors in python !

Why Yase ?

Yase enable you to encode any sequence which can be represented by string to be encoded into a list of word-vector representation.

When searching over a tool to encode a sentence as a list of word-vector, it was clear that there was no simple tool to use. And so, i decided to create Yase.

Note : If you only want to get the word-vector of a word, or average of word-vector in sentence, you should probably better check Spacy.

Requirements

Yase requirements are :

Mapping file

The mapping should be a columnar file like :

<token> <vector value>
token1 0.1 0.6 -1.2
token2 0.6 -2.3 3.4

All data should be separated by space, thus no space is allowed in token. You should be able to directly use Facebook Fast Text pretrained word vector as mapping.

Input file

Input file should be a list of text, with one sample per line.

hello world
Yase is awesome !

The default separator is a space " " but any regular expression can be provided.

Note that Yase is case insensitive

How to use

yase is command line tool. You can install by with :pip install git+https://github.com/PPACI/yase.git

>> yase
usage: yase [-h] --input input.txt [--input-encoding UTF8] --output
               output.txt --mapping mapping.vec [--mapping-encoding UTF8]
               [--separator \ |\.|\,] [--no-replace]
               [--cleaning-json cleaning.json]

Yet Another Sequence Encoder

optional arguments:
  -h, --help            show this help message and exit
  --input input.txt     Path to file to encode
  --input-encoding UTF8
                        encoding of input file. UTF8 by default
  --output output.txt   Path to output file
  --mapping mapping.vec
                        Path to mapping file
  --mapping-encoding UTF8
                        encoding of mapping file. UTF8 by default
  --separator \ |\.|\,  regular expression used to split the input sequence
  --no-replace          don't clean input data
  --cleaning-json cleaning.json
                        Path to your own json replacement file for cleaning.
                        Will use the included replacement file otherwise.

If you wanted to use the english word vector for an input file like previously described :

yase --input "input.txt" --output "output.csv" --mapping "wiki.en.vec" 

Output format

The idea behind yase is to be as easy as possible to integrate it in all data science processing.

Yase output it's your data as CSV.

The only problem with CSV is that it's difficult to integrate multi-dimensional array. So we had to find a compromise..

Yase encode the vector columns in JSON format, which is easily readable and is very similar to python array representation.

The output file will be similar to :

inputs vectors
hello world [[1,1,1],[2,2,2]]
yase is awesome ! [[3,3,3],[4,4,4]]

Cleaning

Yase will automatically try to clean your input file by applying regex in the right order.

For example : Hello I'm yase.Nice to meet you will magically become Hello I m yase . Nice to meet you.

Remember that yase is case insensitive. So yase will understand as hello i m yase . nice to meet you.

Lastly, if your mapping doesn't include a mapping for ".", you will obtain vectors for hello i m yase nice to meet you

Of course, you can disable this behaviour by providing --no-replace argument.

Providing your own replacement file

You can do this by providing a path to your file with --cleaning-json.

The replacement file is a json like :

{
  "\"": "",
  "'": "",
  ",": " , ",
  "\\.": " . ",
  "  ": " "
}

Input are regex, so remind to escape . or *.

Note that replacement are made in the same order as in the json. So here, the first replacement will be to remove "

How to load a yase output ?

As said previously, the choice made with Yase make it possible to use it as simply as :

import pandas, json

csv = pandas.read_csv("output.csv")
csv.vectors = csv.vectors.apply(json.loads)

csv.head()

Note that Pandas is not mandatory but very recommended for data science.

TODO

  • Optimize Mapping loading time
  • Optional argument to output fixed size vectors for all input sequences
  • Surely lot of thing !

Can i contribute ?

Off course ! If you want to improve Yase, your idea / pull requests / issues are welcomed !

Owner
Pierre PACI
Cloud Engineer @FundsDLT Luxembourg
Pierre PACI
Simple Speech to Text, Text to Speech

Simple Speech to Text, Text to Speech 1. Download Repository Opsi 1 Download repository ini, extract di lokasi yang diinginkan Opsi 2 Jika sudah famil

Habib Abdurrasyid 5 Dec 28, 2021
This is an incredibly powerful calculator that is capable of many useful day-to-day functions.

Description 💻 This is an incredibly powerful calculator that is capable of many useful day-to-day functions. Such functions include solving basic ari

Jordan Leich 37 Nov 19, 2022
Recognition of 38 speech commands in russian. Based on Yandex Cup 2021 ML Challenge: ASR

Speech_38_ru_commands Recognition of 38 speech commands in russian. Based on Yandex Cup 2021 ML Challenge: ASR Программа умеет распознавать 38 ключевы

Andrey 9 May 05, 2022
Code for the paper "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer"

T5: Text-To-Text Transfer Transformer The t5 library serves primarily as code for reproducing the experiments in Exploring the Limits of Transfer Lear

Google Research 4.6k Jan 01, 2023
This repository has a implementations of data augmentation for NLP for Japanese.

daaja This repository has a implementations of data augmentation for NLP for Japanese: EDA: Easy Data Augmentation Techniques for Boosting Performance

Koga Kobayashi 60 Nov 11, 2022
Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Eric Wallace 248 Dec 17, 2022
Material for GW4SHM workshop, 16/03/2022.

GW4SHM Workshop Wednesday, 16th March 2022 (13:00 – 15:15 GMT): Presented by: Dr. Rhodri Nelson, Imperial College London Project website: https://www.

Devito Codes 1 Mar 16, 2022
Code for the paper "Are Sixteen Heads Really Better than One?"

Are Sixteen Heads Really Better than One? This repository contains code to reproduce the experiments in our paper Are Sixteen Heads Really Better than

Paul Michel 143 Dec 14, 2022
Free and Open Source Machine Translation API. 100% self-hosted, offline capable and easy to setup.

LibreTranslate Try it online! | API Docs | Community Forum Free and Open Source Machine Translation API, entirely self-hosted. Unlike other APIs, it d

3.4k Dec 27, 2022
txtai: Build AI-powered semantic search applications in Go

txtai: Build AI-powered semantic search applications in Go txtai executes machine-learning workflows to transform data and build AI-powered semantic s

NeuML 49 Dec 06, 2022
BPEmb is a collection of pre-trained subword embeddings in 275 languages, based on Byte-Pair Encoding (BPE) and trained on Wikipedia.

BPEmb is a collection of pre-trained subword embeddings in 275 languages, based on Byte-Pair Encoding (BPE) and trained on Wikipedia. Its intended use is as input for neural models in natural languag

Benjamin Heinzerling 1.1k Jan 03, 2023
(ACL-IJCNLP 2021) Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models.

BERT Convolutions Code for the paper Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models. Contains expe

mlpc-ucsd 21 Jul 18, 2022
In this project, we compared Spanish BERT and Multilingual BERT in the Sentiment Analysis task.

Applying BERT Fine Tuning to Sentiment Classification on Amazon Reviews Abstract Sentiment analysis has made great progress in recent years, due to th

Alexander Leonardo Lique Lamas 5 Jan 03, 2022
Code for "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022.

README Code for Two-stage Identifier: "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022. For details of the model a

Yongliang Shen 45 Nov 29, 2022
Russian words synonyms and antonyms

ru_synonyms Russian words synonyms and antonyms. Install pip install git+https://github.com/ahmados/rusynonyms.git Usage from ru_synonyms import Anto

sumekenov 7 Dec 14, 2022
A Telegram bot to add notes to Flomo.

flomo bot 使用 Telegram 机器人发送笔记到你的 Flomo. 你需要有一台可访问 Telegram 的服务器。 Steps @BotFather 新建机器人,获取 token Flomo 官网获取 API,链接 https://flomoapp.com/mine?source=in

Zhen 44 Dec 30, 2022
CCF BDCI 2020 房产行业聊天问答匹配赛道 A榜47/2985

CCF BDCI 2020 房产行业聊天问答匹配 A榜47/2985 赛题描述详见:https://www.datafountain.cn/competitions/474 文件说明 data: 存放训练数据和测试数据以及预处理代码 model_bert.py: 网络模型结构定义 adv_train

shuo 40 Sep 28, 2022
Official Stanford NLP Python Library for Many Human Languages

Official Stanford NLP Python Library for Many Human Languages

Stanford NLP 6.4k Jan 02, 2023
Big Bird: Transformers for Longer Sequences

BigBird, is a sparse-attention based transformer which extends Transformer based models, such as BERT to much longer sequences. Moreover, BigBird comes along with a theoretical understanding of the c

Google Research 457 Dec 23, 2022
An assignment from my grad-level data mining course demonstrating some experience with NLP/neural networks/Pytorch

NLP-Pytorch-Assignment An assignment from my grad-level data mining course (before I started personal projects) demonstrating some experience with NLP

David Thorne 0 Feb 06, 2022