SuMa++: Efficient LiDAR-based Semantic SLAM (Chen et al IROS 2019)

Overview

SuMa++: Efficient LiDAR-based Semantic SLAM

This repository contains the implementation of SuMa++, which generates semantic maps only using three-dimensional laser range scans.

Developed by Xieyuanli Chen and Jens Behley.

SuMa++ is built upon SuMa and RangeNet++. For more details, we refer to the original project websites SuMa and RangeNet++.

An example of using SuMa++: ptcl

Table of Contents

  1. Introduction
  2. Publication
  3. Dependencies
  4. Build
  5. How to run
  6. More Related Work
  7. License

Publication

If you use our implementation in your academic work, please cite the corresponding paper:

@inproceedings{chen2019iros, 
		author = {X. Chen and A. Milioto and E. Palazzolo and P. Giguère and J. Behley and C. Stachniss},
		title  = {{SuMa++: Efficient LiDAR-based Semantic SLAM}},
		booktitle = {Proceedings of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS)},
		year = {2019},
		codeurl = {https://github.com/PRBonn/semantic_suma/},
		videourl = {https://youtu.be/uo3ZuLuFAzk},
}

Dependencies

  • catkin
  • Qt5 >= 5.2.1
  • OpenGL >= 4.0
  • libEigen >= 3.2
  • gtsam >= 4.0 (tested with 4.0.0-alpha2)

In Ubuntu 16.04: Installing all dependencies should be accomplished by

sudo apt-get install build-essential cmake libgtest-dev libeigen3-dev libboost-all-dev qtbase5-dev libglew-dev libqt5libqgtk2 catkin

Additionally, make sure you have catkin-tools and the fetch verb installed:

sudo apt install python-pip
sudo pip install catkin_tools catkin_tools_fetch empy

Build

rangenet_lib

To use SuMa++, you need to first build the rangenet_lib with the TensorRT and C++ interface. For more details about building and using rangenet_lib you could find in rangenet_lib.

SuMa++

Clone the repository in the src directory of the same catkin workspace where you built the rangenet_lib:

git clone https://github.com/PRBonn/semantic_suma.git

Download the additional dependencies (or clone glow into your catkin workspace src yourself):

catkin deps fetch

For the first setup of your workspace containing this project, you need:

catkin build --save-config -i --cmake-args -DCMAKE_BUILD_TYPE=Release -DOPENGL_VERSION=430 -DENABLE_NVIDIA_EXT=YES

Where you have to set OPENGL_VERSION to the supported OpenGL core profile version of your system, which you can query as follows:

$ glxinfo | grep "version"
server glx version string: 1.4
client glx version string: 1.4
GLX version: 1.4
OpenGL core profile version string: 4.3.0 NVIDIA 367.44
OpenGL core profile shading language version string: 4.30 NVIDIA [...]
OpenGL version string: 4.5.0 NVIDIA 367.44
OpenGL shading language version string: 4.50 NVIDIA

Here the line OpenGL core profile version string: 4.3.0 NVIDIA 367.44 is important and therefore you should use -DOPENGL_VERSION = 430. If you are unsure you can also leave it on the default version 330, which should be supported by all OpenGL-capable devices.

If you have a NVIDIA device, like a Geforce or Quadro graphics card, you should also activate the NVIDIA extensions using -DENABLE_NVIDIA_EXT=YES for info about the current GPU memory usage of the program.

After this setup steps, you can build with catkin build, since the configuration has been saved to your current Catkin profile (therefore, --save-config was needed).

Now the project root directory (e.g. ~/catkin_ws/src/semantic_suma) should contain a bin directory containing the visualizer.

How to run

Important Notice

  • Before running SuMa++, you need to first build the rangenet_lib and download the pretrained model.
  • You need to specify the model path in the configuration file in the config/ folder.
  • For the first time using, rangenet_lib will take several minutes to build a .trt model for SuMa++.
  • SuMa++ now can only work with KITTI dataset, since the semantic segmentation may not generalize well in other environments.
  • To use SuMa++ with your own dataset, you may finetune or retrain the semantic segmentation network.

All binaries are copied to the bin directory of the source folder of the project. Thus,

  1. run visualizer in the bin directory by ./visualizer,
  2. open a Velodyne directory from the KITTI Visual Odometry Benchmark and select a ".bin" file,
  3. start the processing of the scans via the "play button" in the GUI.

More Related Work

OverlapNet - Loop Closing for 3D LiDAR-based SLAM

This repo contains the code for our RSS2020 paper: OverlapNet - Loop Closing for 3D LiDAR-based SLAM.

OverlapNet is a modified Siamese Network that predicts the overlap and relative yaw angle of a pair of range images generated by 3D LiDAR scans, which can be used for place recognition and loop closing.

Overlap-based LiDAR Global Localization

This repo contains the code for our IROS2020 paper: Learning an Overlap-based Observation Model for 3D LiDAR Localization.

It uses the OverlapNet to train an observation model for Monte Carlo Localization and achieves global localization with 3D LiDAR scans.

License

Copyright 2019, Xieyuanli Chen, Jens Behley, Cyrill Stachniss, Photogrammetry and Robotics Lab, University of Bonn.

This project is free software made available under the MIT License. For details see the LICENSE file.

Owner
Photogrammetry & Robotics Bonn
Photogrammetry & Robotics Lab at the University of Bonn
Photogrammetry & Robotics Bonn
Consecutive-Subsequence - Simple software to calculate susequence with highest sum

Simple software to calculate susequence with highest sum This repository contain

Gbadamosi Farouk 1 Jan 31, 2022
An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results

EasyDatas An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results Installation pip install git+https

Ximing Yang 4 Dec 14, 2021
Predicting Price of house by considering ,house age, Distance from public transport

House-Price-Prediction Predicting Price of house by considering ,house age, Distance from public transport, No of convenient stores around house etc..

Musab Jaleel 1 Jan 08, 2022
Create Own QR code with Python

Create-Own-QR-code Create Own QR code with Python SO guys in here, you have to install pyqrcode 2. open CMD and type python -m pip install pyqrcode

JehanKandy 10 Jul 13, 2022
GAN-STEM-Conv2MultiSlice - Exploring Generative Adversarial Networks for Image-to-Image Translation in STEM Simulation

GAN-STEM-Conv2MultiSlice GAN method to help covert lower resolution STEM images generated by convolution methods to higher resolution STEM images gene

UW-Madison Computational Materials Group 2 Feb 10, 2021
Codebase for the paper titled "Continual learning with local module selection"

This repository contains the codebase for the paper Continual Learning via Local Module Composition. Setting up the environemnt Create a new conda env

Oleksiy Ostapenko 20 Dec 10, 2022
Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

This is the code associated with the paper Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks, published at CVPR 2020.

Thomas Roddick 219 Dec 20, 2022
Si Adek Keras is software VR dangerous object detection.

Si Adek Python Keras Sistem Informasi Deteksi Benda Berbahaya Keras Python. Version 1.0 Developed by Ananda Rauf Maududi. Developed date: 24 November

Ananda Rauf 1 Dec 21, 2021
Implementation of ResMLP, an all MLP solution to image classification, in Pytorch

ResMLP - Pytorch Implementation of ResMLP, an all MLP solution to image classification out of Facebook AI, in Pytorch Install $ pip install res-mlp-py

Phil Wang 178 Dec 02, 2022
Numenta Platform for Intelligent Computing is an implementation of Hierarchical Temporal Memory (HTM), a theory of intelligence based strictly on the neuroscience of the neocortex.

NuPIC Numenta Platform for Intelligent Computing The Numenta Platform for Intelligent Computing (NuPIC) is a machine intelligence platform that implem

Numenta 6.3k Dec 30, 2022
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.

A ready-to-use framework of latest models for structured (tabular) data learning with PyTorch. Applications include recommendation, CRT prediction, healthcare analytics, and etc.

48 Nov 30, 2022
Code for the paper "Reinforcement Learning as One Big Sequence Modeling Problem"

Trajectory Transformer Code release for Reinforcement Learning as One Big Sequence Modeling Problem. Installation All python dependencies are in envir

Michael Janner 269 Jan 05, 2023
Official code for UnICORNN (ICML 2021)

UnICORNN (Undamped Independent Controlled Oscillatory RNN) [ICML 2021] This repository contains the implementation to reproduce the numerical experime

Konstantin Rusch 21 Dec 22, 2022
Video Matting Refinement For Python

Video-matting refinement Library (use pip to install) scikit-image numpy av matplotlib Run Static background python path_to_video.mp4 Moving backgroun

3 Jan 11, 2022
Code for DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning Pytorch Implementation for DisCo: Remedy Self-supervi

79 Jan 06, 2023
PyTorch implementation of "Contrast to Divide: self-supervised pre-training for learning with noisy labels"

Contrast to Divide: self-supervised pre-training for learning with noisy labels This is an official implementation of "Contrast to Divide: self-superv

55 Nov 23, 2022
Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems This is our experimental code for RecSys 2021 paper "Learning

11 Jul 28, 2022
Zsseg.baseline - Zero-Shot Semantic Segmentation

This repo is for our paper A Simple Baseline for Zero-shot Semantic Segmentation

98 Dec 20, 2022
Activating More Pixels in Image Super-Resolution Transformer

HAT [Paper Link] Activating More Pixels in Image Super-Resolution Transformer Xiangyu Chen, Xintao Wang, Jiantao Zhou and Chao Dong BibTeX @article{ch

XyChen 270 Dec 27, 2022
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Julius Kunze 26 Oct 05, 2022