Predict halo masses from simulations via graph neural networks

Overview

HaloGraphNet

DOI arXiv

Predict halo masses from simulations via Graph Neural Networks.

Given a dark matter halo and its galaxies, creates a graph with information about the 3D position, stellar mass and other properties. Then, it trains a Graph Neural Network to predict the mass of the host halo. Data are taken from the CAMELS hydrodynamic simulations, specially suited for Machine Learning purposes. Neural nets architectures are defined making use of the package PyTorch-geometric.

See the papers arXiv:2111.08683 for more details.

Scripts

Here is a brief description of the codes included:

  • main.py: main driver to train and test the network.

  • onlytest.py: tests a pre-trained model.

  • hyperparams_optimization.py: optimize the hyperparameters using optuna.

  • camelsplots.py: plot several features of the CAMELS data.

  • captumtest.py: studies interpretability of the model.

  • halomass.py: using models trained in CAMELS, predicts the mass of real halos, such as the Milky Way and Andromeda.

  • visualize_graphs.py: display several halos as graphs in 2D or 3D.

The folder Hyperparameters includes files with lists of default hyperparameters, to be modified by the user. The current files contain the best values for each CAMELS simulation suite and set separately, obtained from hyperparameter optimization.

The folder Models includes some pre-trained models for the hyperparameters defined in Hyperparameters.

In the folder Source, several auxiliary routines are defined:

  • constants.py: basic constants and initialization.

  • load_data.py: contains routines to load data from simulation files.

  • plotting.py: includes functions for displaying the loss evolution and the results from the neural nets.

  • networks.py: includes the definition of the Graph Neural Networks architectures.

  • training.py: includes routines for training and testing the net.

  • galaxies.py: contains data for galaxies from the Milky Way and Andromeda halos.

Requisites

The libraries required for training the models and compute some statistics are:

  • numpy
  • pytorch-geometric
  • matplotlib
  • scipy
  • sklearn
  • optuna (only for optimization in hyperparams_optimization.py)
  • astropy (only for MW and M31 data in Source/galaxies.py)
  • captum (only for interpretability in captumtest.py)

Usage

These are some advices to employ the scripts described above:

  1. To perform a search of the optimal hyperparameters, run hyperparams_optimization.py.
  2. To train a model with a given set of parameters defined in params.py, run main.py.
  3. Once a model is trained, run onlytest.py to test in the training simulation suite and cross test it in the other one included in CAMELS (IllustrisTNG and SIMBA).
  4. Run captumtest.py to study the interpretability of the models, feature importance and saliency graphs.
  5. Run halomass.py to infer the mass of the Milky Way and Andromeda, whose data are defined in Source/galaxies.py. For this, note that only models without the stellar mass radius as feature are considered.

Citation

If you use the code, please link this repository, and cite arXiv:2111.08683 and the DOI 10.5281/zenodo.5676528.

Contact

For comments, questions etc. you can contact me at [email protected].

You might also like...
[CIKM 2019] Code and dataset for "Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction"

FiGNN for CTR prediction The code and data for our paper in CIKM2019: Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Predicti

Implementation of
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

Source code of NeurIPS 2021 Paper ''Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration''

CaGCN This repo is for source code of NeurIPS 2021 paper "Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration". Paper L

Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

My published benchmark for a Kaggle Simulations Competition
My published benchmark for a Kaggle Simulations Competition

Lux AI Working Title Bot Please refer to the Kaggle notebook for the comment section. The comment section contains my explanation on my code structure

Urban mobility simulations with Python3, RLlib (Deep Reinforcement Learning) and Mesa (Agent-based modeling)
Urban mobility simulations with Python3, RLlib (Deep Reinforcement Learning) and Mesa (Agent-based modeling)

Deep Reinforcement Learning for Smart Cities Documentation RLlib: https://docs.ray.io/en/master/rllib.html Mesa: https://mesa.readthedocs.io/en/stable

This project aims to be a handler for input creation and running of multiple RICEWQ simulations.

What is autoRICEWQ? This project aims to be a handler for input creation and running of multiple RICEWQ simulations. What is RICEWQ? From the descript

TUPÃ was developed to analyze electric field properties in molecular simulations
TUPÃ was developed to analyze electric field properties in molecular simulations

TUPÃ: Electric field analyses for molecular simulations What is TUPÃ? TUPÃ (pronounced as tu-pan) is a python algorithm that employs MDAnalysis engine

Complex-Valued Neural Networks (CVNN)Complex-Valued Neural Networks (CVNN)

Complex-Valued Neural Networks (CVNN) Done by @NEGU93 - J. Agustin Barrachina Using this library, the only difference with a Tensorflow code is that y

Releases(v1.0)
Owner
Pablo Villanueva Domingo
PhD in Physics at Instituto de Física Corpuscular (IFIC) - Universitat de València (UV), Spain. Researching on cosmology and deep learning.
Pablo Villanueva Domingo
Official implementation for "Symbolic Learning to Optimize: Towards Interpretability and Scalability"

Symbolic Learning to Optimize This is the official implementation for ICLR-2022 paper "Symbolic Learning to Optimize: Towards Interpretability and Sca

VITA 8 Dec 19, 2022
PyTorch Implementation of PIXOR: Real-time 3D Object Detection from Point Clouds

PIXOR: Real-time 3D Object Detection from Point Clouds This is a custom implementation of the paper from Uber ATG using PyTorch 1.0. It represents the

Philip Huang 270 Dec 14, 2022
Implementation of Monocular Direct Sparse Localization in a Prior 3D Surfel Map (DSL)

DSL Project page: https://sites.google.com/view/dsl-ram-lab/ Monocular Direct Sparse Localization in a Prior 3D Surfel Map Authors: Haoyang Ye, Huaiya

Haoyang Ye 93 Nov 30, 2022
Code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language"

The repository provides the source code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language" submitted to HA

Sherzod Hakimov 3 Aug 04, 2022
Select, weight and analyze complex sample data

Sample Analytics In large-scale surveys, often complex random mechanisms are used to select samples. Estimates derived from such samples must reflect

samplics 37 Dec 15, 2022
[NeurIPS 2021] COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining

COCO-LM This repository contains the scripts for fine-tuning COCO-LM pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: COCO-LM: Correcting an

Microsoft 106 Dec 12, 2022
4D Human Body Capture from Egocentric Video via 3D Scene Grounding

4D Human Body Capture from Egocentric Video via 3D Scene Grounding [Project] [Paper] Installation: Our method requires the same dependencies as SMPLif

Miao Liu 37 Nov 08, 2022
Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning This repository is official Tensorflow implementation of paper: Ensemb

Seunghyun Lee 12 Oct 18, 2022
Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations, CVPR 2019 (Oral)

Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations The code of: Weakly Supervised Learning of Instance Segmentation with I

Jiwoon Ahn 472 Dec 29, 2022
Official Implementation of "Designing an Encoder for StyleGAN Image Manipulation"

Designing an Encoder for StyleGAN Image Manipulation (SIGGRAPH 2021) Recently, there has been a surge of diverse methods for performing image editing

749 Jan 09, 2023
ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm

ManipulaTHOR: A Framework for Visual Object Manipulation Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha

AI2 65 Dec 30, 2022
NAVER BoostCamp Final Project

CV 14조 final project Super Resolution and Deblur module Inference code & Pretrained weight Repo SwinIR Deblur 실행 방법 streamlit run WebServer/Server_SRD

JiSeong Kim 5 Sep 06, 2022
Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction

This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se

Maha 490 Dec 15, 2022
covid question answering datasets and fine tuned models

Covid-QA Fine tuned models for question answering on Covid-19 data. Hosted Inference This model has been contributed to huggingface.Click here to see

Abhijith Neil Abraham 19 Sep 09, 2021
yufan 81 Dec 08, 2022
Preprossing-loan-data-with-NumPy - In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United States.

Preprossing-loan-data-with-NumPy In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United

Dhawal Chitnavis 2 Jan 03, 2022
Self-Supervised Multi-Frame Monocular Scene Flow (CVPR 2021)

Self-Supervised Multi-Frame Monocular Scene Flow 3D visualization of estimated depth and scene flow (overlayed with input image) from temporally conse

Visual Inference Lab @TU Darmstadt 85 Dec 22, 2022
Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation

Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation The skip connections in U-Net pass features from the levels of enc

Boheng Cao 1 Dec 29, 2021
Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Dominik Klein 189 Dec 21, 2022
NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.

NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions Overview NUANCED is a user-centric conversational recommen

Facebook Research 18 Dec 28, 2021