Exploring the Dual-task Correlation for Pose Guided Person Image Generation

Overview

Dual-task Pose Transformer Network

The source code for our paper "Exploring Dual-task Correlation for Pose Guided Person Image Generation“ (CVPR2022)

framework

Get Start

1) Requirement

  • Python 3.7.9
  • Pytorch 1.7.1
  • torchvision 0.8.2
  • CUDA 11.1
  • NVIDIA A100 40GB PCIe

2) Data Preperation

Following PATN, the dataset split files and extracted keypoints files can be obtained as follows:

DeepFashion

  • Download the DeepFashion dataset in-shop clothes retrival benchmark, and put them under the ./dataset/fashion directory.

  • Download train/test pairs and train/test keypoints annotations from Google Drive, including fasion-resize-pairs-train.csv, fasion-resize-pairs-test.csv, fasion-resize-annotation-train.csv, fasion-resize-annotation-train.csv, train.lst, test.lst, and put them under the ./dataset/fashion directory.

  • Split the raw image into the training set (./dataset/fashion/train) and test set (./dataset/fashion/test):

python data/generate_fashion_datasets.py

Market1501

  • Download the Market1501 dataset from here. Rename bounding_box_train and bounding_box_test as train and test, and put them under the ./dataset/market directory.

  • Download train/test key points annotations from Google Drive including market-pairs-train.csv, market-pairs-test.csv, market-annotation-train.csv, market-annotation-train.csv. Put these files under the ./dataset/market directory.

3) Train a model

DeepFashion

python train.py --name=DPTN_fashion --model=DPTN --dataset_mode=fashion --dataroot=./dataset/fashion --batchSize 32 --gpu_id=0

Market1501

python train.py --name=DPTN_market --model=DPTN --dataset_mode=market --dataroot=./dataset/market --dis_layer=3 --lambda_g=5 --lambda_rec 2 --t_s_ratio=0.8 --save_latest_freq=10400 --batchSize 32 --gpu_id=0

4) Test the model

You can directly download our test results from Google Drive: Deepfashion, Market1501.

DeepFashion

python test.py --name=DPTN_fashion --model=DPTN --dataset_mode=fashion --dataroot=./dataset/fashion --which_epoch latest --results_dir ./results/DPTN_fashion --batchSize 1 --gpu_id=0

Market1501

python test.py --name=DPTN_market --model=DPTN --dataset_mode=market --dataroot=./dataset/market --which_epoch latest --results_dir=./results/DPTN_market  --batchSize 1 --gpu_id=0

5) Evaluation

We adopt SSIM, PSNR, FID and LPIPS for the evaluation.

DeepFashion

python -m  metrics.metrics --gt_path=./dataset/fashion/test --distorated_path=./results/DPTN_fashion --fid_real_path=./dataset/fashion/train --name=./fashion

Market1501

python -m  metrics.metrics --gt_path=./dataset/market/test --distorated_path=./results/DPTN_market --fid_real_path=./dataset/market/train --name=./market --market

6) Pre-trained Model

Our pre-trained model can be downloaded from Google Drive: Deepfashion, Market1501.

Citation


Acknowledgement

We build our project based on pix2pix. Some dataset preprocessing methods are derived from PATN.

Plug-n-Play Reinforcement Learning in Python with OpenAI Gym and JAX

coax is built on top of JAX, but it doesn't have an explicit dependence on the jax python package. The reason is that your version of jaxlib will depend on your CUDA version.

128 Dec 27, 2022
Official repository of the AAAI'2022 paper "Contrast and Generation Make BART a Good Dialogue Emotion Recognizer"

CoG-BART Contrast and Generation Make BART a Good Dialogue Emotion Recognizer Quick Start: To run the model on test sets of four datasets, Download th

39 Dec 24, 2022
Train a state-of-the-art yolov3 object detector from scratch!

TrainYourOwnYOLO: Building a Custom Object Detector from Scratch This repo let's you train a custom image detector using the state-of-the-art YOLOv3 c

AntonMu 616 Jan 08, 2023
Pointer-generator - Code for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Networks

Note: this code is no longer actively maintained. However, feel free to use the Issues section to discuss the code with other users. Some users have u

Abi See 2.1k Jan 04, 2023
Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences", CVPR 2021.

HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature fo

Google Interns 50 Dec 21, 2022
Contains code for the paper "Vision Transformers are Robust Learners".

Vision Transformers are Robust Learners This repository contains the code for the paper Vision Transformers are Robust Learners by Sayak Paul* and Pin

Sayak Paul 103 Jan 05, 2023
Seq2seq - Sequence to Sequence Learning with Keras

Seq2seq Sequence to Sequence Learning with Keras Hi! You have just found Seq2Seq. Seq2Seq is a sequence to sequence learning add-on for the python dee

Fariz Rahman 3.1k Dec 18, 2022
Aircraft design optimization made fast through modern automatic differentiation

Aircraft design optimization made fast through modern automatic differentiation. Plug-and-play analysis tools for aerodynamics, propulsion, structures, trajectory design, and much more.

Peter Sharpe 394 Dec 23, 2022
Face-Recognition-Attendence-System - This face recognition Attendence system using Python

Face-Recognition-Attendence-System I have developed this face recognition Attend

Riya Gupta 4 May 10, 2022
OpenAi's gym environment wrapper to vectorize them with Ray

Ray Vector Environment Wrapper You would like to use Ray to vectorize your environment but you don't want to use RLLib ? You came to the right place !

Pierre TASSEL 15 Nov 10, 2022
Plenoxels: Radiance Fields without Neural Networks

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Sara Fridovich-Keil 81 Dec 25, 2022
Fast and Simple Neural Vocoder, the Multiband RNNMS

Multiband RNN_MS Fast and Simple vocoder, Multiband RNN_MS. Demo Quick training How to Use System Details Results References Demo ToDO: Link super gre

tarepan 5 Jan 11, 2022
Keras-1D-ACGAN-Data-Augmentation

Keras-1D-ACGAN-Data-Augmentation What is the ACGAN(Auxiliary Classifier GANs) ? Related Paper : [Abstract : Synthesizing high resolution photorealisti

Jae-Hoon Shim 7 Dec 23, 2022
Few-Shot Object Detection via Association and DIscrimination

Few-Shot Object Detection via Association and DIscrimination Code release of our NeurIPS 2021 paper: Few-Shot Object Detection via Association and DIs

Cao Yuhang 49 Dec 18, 2022
Image-Stitching - Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm

About The Project Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm (Random Sample Consensus). Author: Andreas P

Andreas Panayiotou 3 Jan 03, 2023
PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules

Dynamic Routing Between Capsules - PyTorch implementation PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules from Sara Sabour,

Adam Bielski 475 Dec 24, 2022
一个运行在 𝐞𝐥𝐞𝐜𝐕𝟐𝐏 或 𝐪𝐢𝐧𝐠𝐥𝐨𝐧𝐠 等定时面板的签到项目

定时面板上的签到盒 一个运行在 𝐞𝐥𝐞𝐜𝐕𝟐𝐏 或 𝐪𝐢𝐧𝐠𝐥𝐨𝐧𝐠 等定时面板的签到项目 𝐞𝐥𝐞𝐜𝐕𝟐𝐏 𝐪𝐢𝐧𝐠𝐥𝐨𝐧𝐠 特别声明 本仓库发布的脚本及其中涉及的任何解锁和解密分析脚本,仅用于测试和学习研究,禁止用于商业用途,不能保证其合

Leon 1.1k Dec 30, 2022
Pytorch-diffusion - A basic PyTorch implementation of 'Denoising Diffusion Probabilistic Models'

PyTorch implementation of 'Denoising Diffusion Probabilistic Models' This reposi

Arthur Juliani 76 Jan 07, 2023
这是一个deeplabv3-plus-pytorch的源码,可以用于训练自己的模型。

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 训练步骤

Bubbliiiing 350 Dec 28, 2022
This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

Quinn Herden 1 Feb 04, 2022