Bokeh Plotting Backend for Pandas and GeoPandas

Overview

Pandas-Bokeh provides a Bokeh plotting backend for Pandas, GeoPandas and Pyspark DataFrames, similar to the already existing Visualization feature of Pandas. Importing the library adds a complementary plotting method plot_bokeh() on DataFrames and Series.

With Pandas-Bokeh, creating stunning, interactive, HTML-based visualization is as easy as calling:

df.plot_bokeh()

Pandas-Bokeh also provides native support as a Pandas Plotting backend for Pandas >= 0.25. When Pandas-Bokeh is installed, switchting the default Pandas plotting backend to Bokeh can be done via:

pd.set_option('plotting.backend', 'pandas_bokeh')

More details about the new Pandas backend can be found below.


For more information have a look at the Examples below or at notebooks on the Github Repository of this project.

Startimage


Installation

You can install Pandas-Bokeh from PyPI via pip

pip install pandas-bokeh

or conda:

conda install -c patrikhlobil pandas-bokeh

With the current release 0.5, Pandas-Bokeh officially supports Python 3.6 and newer. It will probably still work for older Python versions, but is not tested against these.


The current release is 0.5. For more details, see Release Notes.


How To Use

Classical Use

The Pandas-Bokeh library should be imported after Pandas, GeoPandas and/or Pyspark. After the import, one should define the plotting output, which can be:

  • pandas_bokeh.output_notebook(): Embeds the Plots in the cell outputs of the notebook. Ideal when working in Jupyter Notebooks.

  • pandas_bokeh.output_file(filename): Exports the plot to the provided filename as an HTML.

For more details about the plotting outputs, see the reference here or the Bokeh documentation.

Notebook output (see also bokeh.io.output_notebook)

import pandas as pd
import pandas_bokeh
pandas_bokeh.output_notebook()

File output to "Interactive Plot.html" (see also bokeh.io.output_file)

import pandas as pd
import pandas_bokeh
pandas_bokeh.output_file("Interactive Plot.html")

Pandas-Bokeh as native Pandas plotting backend

For pandas >= 0.25, a plotting backend switch is natively supported. It can be achievied by calling:

import pandas as pd
pd.set_option('plotting.backend', 'pandas_bokeh')

Now, the plotting API is accessible for a Pandas DataFrame via:

df.plot(...)

All additional functionalities of Pandas-Bokeh are then accessible at pd.plotting. So, setting the output to notebook is:

pd.plotting.output_notebook()

or calling the grid layout functionality:

pd.plotting.plot_grid(...)

Note: Backwards compatibility is kept since there will still be the df.plot_bokeh(...) methods for a DataFrame.



Plot types

Supported plottypes are at the moment:


Also, check out the complementary chapter Outputs, Formatting & Layouts about:




Lineplot

Basic Lineplot

This simple lineplot in Pandas-Bokeh already contains various interactive elements:

  • a pannable and zoomable (zoom in plotarea and zoom on axis) plot
  • by clicking on the legend elements, one can hide and show the individual lines
  • a Hovertool for the plotted lines

Consider the following simple example:

import numpy as np

np.random.seed(42)
df = pd.DataFrame({"Google": np.random.randn(1000)+0.2, 
                   "Apple": np.random.randn(1000)+0.17}, 
                   index=pd.date_range('1/1/2000', periods=1000))
df = df.cumsum()
df = df + 50
df.plot_bokeh(kind="line")       #equivalent to df.plot_bokeh.line()

ApplevsGoogle_1

Note, that similar to the regular pandas.DataFrame.plot method, there are also additional accessors to directly access the different plotting types like:

  • df.plot_bokeh(kind="line", ...)df.plot_bokeh.line(...)
  • df.plot_bokeh(kind="bar", ...)df.plot_bokeh.bar(...)
  • df.plot_bokeh(kind="hist", ...)df.plot_bokeh.hist(...)
  • ...

Advanced Lineplot

There are various optional parameters to tune the plots, for example:

  • kind: Which kind of plot should be produced. Currently supported are: "line", "point", "scatter", "bar" and "histogram". In the near future many more will be implemented as horizontal barplot, boxplots, pie-charts, etc.

  • x: Name of the column to use for the horizontal x-axis. If the x parameter is not specified, the index is used for the x-values of the plot. Alternative, also an array of values can be passed that has the same number of elements as the DataFrame.

  • y: Name of column or list of names of columns to use for the vertical y-axis.

  • figsize: Choose width & height of the plot

  • title: Sets title of the plot

  • xlim/ylim: Set visibler range of plot for x- and y-axis (also works for datetime x-axis)

  • xlabel/ylabel: Set x- and y-labels

  • logx/logy: Set log-scale on x-/y-axis

  • xticks/yticks: Explicitly set the ticks on the axes

  • color: Defines a single color for a plot.

  • colormap: Can be used to specify multiple colors to plot. Can be either a list of colors or the name of a Bokeh color palette

  • hovertool: If True a Hovertool is active, else if False no Hovertool is drawn.

  • hovertool_string: If specified, this string will be used for the hovertool (@{column} will be replaced by the value of the column for the element the mouse hovers over, see also Bokeh documentation and here)

  • toolbar_location: Specify the position of the toolbar location (None, "above", "below", "left" or "right"). Default: "right"

  • zooming: Enables/Disables zooming. Default: True

  • panning: Enables/Disables panning. Default: True

  • fontsize_label/fontsize_ticks/fontsize_title/fontsize_legend: Set fontsize of labels, ticks, title or legend (int or string of form "15pt")

  • rangetool Enables a range tool scroller. Default False

  • kwargs**: Optional keyword arguments of bokeh.plotting.figure.line

Try them out to get a feeling for the effects. Let us consider now:

df.plot_bokeh.line(
    figsize=(800, 450),
    y="Apple",
    title="Apple vs Google",
    xlabel="Date",
    ylabel="Stock price [$]",
    yticks=[0, 100, 200, 300, 400],
    ylim=(0, 400),
    toolbar_location=None,
    colormap=["red", "blue"],
    hovertool_string=r"""<img
                        src='https://upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Apple_logo_black.svg/170px-Apple_logo_black.svg.png' 
                        height="42" alt="@imgs" width="42"
                        style="float: left; margin: 0px 15px 15px 0px;"
                        border="2"></img> Apple 
                        
                        <h4> Stock Price: </h4> @{Apple}""",
    panning=False,
    zooming=False)

ApplevsGoogle_2

Lineplot with data points

For lineplots, as for many other plot-kinds, there are some special keyword arguments that only work for this plotting type. For lineplots, these are:

  • plot_data_points: Plot also the data points on the lines

  • plot_data_points_size: Determines the size of the data points

  • marker: Defines the point type (Default: "circle"). Possible values are: 'circle', 'square', 'triangle', 'asterisk', 'circle_x', 'square_x', 'inverted_triangle', 'x', 'circle_cross', 'square_cross', 'diamond', 'cross'

  • kwargs**: Optional keyword arguments of bokeh.plotting.figure.line

Let us use this information to have another version of the same plot:

df.plot_bokeh.line(
    figsize=(800, 450),
    title="Apple vs Google",
    xlabel="Date",
    ylabel="Stock price [$]",
    yticks=[0, 100, 200, 300, 400],
    ylim=(100, 200),
    xlim=("2001-01-01", "2001-02-01"),
    colormap=["red", "blue"],
    plot_data_points=True,
    plot_data_points_size=10,
    marker="asterisk")

ApplevsGoogle_3

Lineplot with rangetool

ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list('ABCD'))
df = df.cumsum()

df.plot_bokeh(rangetool=True)

rangetool


Pointplot

If you just wish to draw the date points for curves, the pointplot option is the right choice. It also accepts the kwargs of bokeh.plotting.figure.scatter like marker or size:

import numpy as np

x = np.arange(-3, 3, 0.1)
y2 = x**2
y3 = x**3
df = pd.DataFrame({"x": x, "Parabula": y2, "Cube": y3})
df.plot_bokeh.point(
    x="x",
    xticks=range(-3, 4),
    size=5,
    colormap=["#009933", "#ff3399"],
    title="Pointplot (Parabula vs. Cube)",
    marker="x")

Pointplot


Stepplot

With a similar API as the line- & pointplots, one can generate a stepplot. Additional keyword arguments for this plot type are passes to bokeh.plotting.figure.step, e.g. mode (before, after, center), see the following example

import numpy as np

x = np.arange(-3, 3, 1)
y2 = x**2
y3 = x**3
df = pd.DataFrame({"x": x, "Parabula": y2, "Cube": y3})
df.plot_bokeh.step(
    x="x",
    xticks=range(-1, 1),
    colormap=["#009933", "#ff3399"],
    title="Pointplot (Parabula vs. Cube)",
    figsize=(800,300),
    fontsize_title=30,
    fontsize_label=25,
    fontsize_ticks=15,
    fontsize_legend=5,
    )

df.plot_bokeh.step(
    x="x",
    xticks=range(-1, 1),
    colormap=["#009933", "#ff3399"],
    title="Pointplot (Parabula vs. Cube)",
    mode="after",
    figsize=(800,300)
    )

Stepplot

Note that the step-plot API of Bokeh does so far not support a hovertool functionality.


Scatterplot

A basic scatterplot can be created using the kind="scatter" option. For scatterplots, the x and y parameters have to be specified and the following optional keyword argument is allowed:

  • category: Determines the category column to use for coloring the scatter points

  • kwargs**: Optional keyword arguments of bokeh.plotting.figure.scatter

Note, that the pandas.DataFrame.plot_bokeh() method return per default a Bokeh figure, which can be embedded in Dashboard layouts with other figures and Bokeh objects (for more details about (sub)plot layouts and embedding the resulting Bokeh plots as HTML click here).

In the example below, we use the building grid layout support of Pandas-Bokeh to display both the DataFrame (using a Bokeh DataTable) and the resulting scatterplot:

# Load Iris Dataset:
df = pd.read_csv(
    r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/iris/iris.csv"
)
df = df.sample(frac=1)

# Create Bokeh-Table with DataFrame:
from bokeh.models.widgets import DataTable, TableColumn
from bokeh.models import ColumnDataSource

data_table = DataTable(
    columns=[TableColumn(field=Ci, title=Ci) for Ci in df.columns],
    source=ColumnDataSource(df),
    height=300,
)

# Create Scatterplot:
p_scatter = df.plot_bokeh.scatter(
    x="petal length (cm)",
    y="sepal width (cm)",
    category="species",
    title="Iris DataSet Visualization",
    show_figure=False,
)

# Combine Table and Scatterplot via grid layout:
pandas_bokeh.plot_grid([[data_table, p_scatter]], plot_width=400, plot_height=350)

Scatterplot

A possible optional keyword parameters that can be passed to bokeh.plotting.figure.scatter is size. Below, we use the sepal length of the Iris data as reference for the size:

#Change one value to clearly see the effect of the size keyword
df.loc[13, "sepal length (cm)"] = 15

#Make scatterplot:
p_scatter = df.plot_bokeh.scatter(
    x="petal length (cm)",
    y="sepal width (cm)",
    category="species",
    title="Iris DataSet Visualization with Size Keyword",
    size="sepal length (cm)")

Scatterplot2

In this example you can see, that the additional dimension sepal length cannot be used to clearly differentiate between the virginica and versicolor species.


Barplot

The barplot API has no special keyword arguments, but accepts optional kwargs of bokeh.plotting.figure.vbar like alpha. It uses per default the index for the bar categories (however, also columns can be used as x-axis category using the x argument).

data = {
    'fruits':
    ['Apples', 'Pears', 'Nectarines', 'Plums', 'Grapes', 'Strawberries'],
    '2015': [2, 1, 4, 3, 2, 4],
    '2016': [5, 3, 3, 2, 4, 6],
    '2017': [3, 2, 4, 4, 5, 3]
}
df = pd.DataFrame(data).set_index("fruits")

p_bar = df.plot_bokeh.bar(
    ylabel="Price per Unit [€]", 
    title="Fruit prices per Year", 
    alpha=0.6)

Barplot

Using the stacked keyword argument you also maked stacked barplots:

p_stacked_bar = df.plot_bokeh.bar(
    ylabel="Price per Unit [€]",
    title="Fruit prices per Year",
    stacked=True,
    alpha=0.6)

Barplot2

Also horizontal versions of the above barplot are supported with the keyword kind="barh" or the accessor plot_bokeh.barh. You can still specify a column of the DataFrame as the bar category via the x argument if you do not wish to use the index.

#Reset index, such that "fruits" is now a column of the DataFrame:
df.reset_index(inplace=True)

#Create horizontal bar (via kind keyword):
p_hbar = df.plot_bokeh(
    kind="barh",
    x="fruits",
    xlabel="Price per Unit [€]",
    title="Fruit prices per Year",
    alpha=0.6,
    legend = "bottom_right",
    show_figure=False)

#Create stacked horizontal bar (via barh accessor):
p_stacked_hbar = df.plot_bokeh.barh(
    x="fruits",
    stacked=True,
    xlabel="Price per Unit [€]",
    title="Fruit prices per Year",
    alpha=0.6,
    legend = "bottom_right",
    show_figure=False)

#Plot all barplot examples in a grid:
pandas_bokeh.plot_grid([[p_bar, p_stacked_bar],
                        [p_hbar, p_stacked_hbar]], 
                       plot_width=450)

Barplot3

Histogram

For drawing histograms (kind="hist"), Pandas-Bokeh has a lot of customization features. Optional keyword arguments for histogram plots are:

  • bins: Determines bins to use for the histogram. If bins is an int, it defines the number of equal-width bins in the given range (10, by default). If bins is a sequence, it defines the bin edges, including the rightmost edge, allowing for non-uniform bin widths. If bins is a string, it defines the method used to calculate the optimal bin width, as defined by histogram_bin_edges.

  • histogram_type: Either "sidebyside", "topontop" or "stacked". Default: "topontop"

  • stacked: Boolean that overrides the histogram_type as "stacked" if given. Default: False

  • kwargs**: Optional keyword arguments of bokeh.plotting.figure.quad

Below examples of the different histogram types:

import numpy as np

df_hist = pd.DataFrame({
    'a': np.random.randn(1000) + 1,
    'b': np.random.randn(1000),
    'c': np.random.randn(1000) - 1
    },
    columns=['a', 'b', 'c'])

#Top-on-Top Histogram (Default):
df_hist.plot_bokeh.hist(
    bins=np.linspace(-5, 5, 41),
    vertical_xlabel=True,
    hovertool=False,
    title="Normal distributions (Top-on-Top)",
    line_color="black")

#Side-by-Side Histogram (multiple bars share bin side-by-side) also accessible via
#kind="hist":
df_hist.plot_bokeh(
    kind="hist",
    bins=np.linspace(-5, 5, 41),
    histogram_type="sidebyside",
    vertical_xlabel=True,
    hovertool=False,
    title="Normal distributions (Side-by-Side)",
    line_color="black")

#Stacked histogram:
df_hist.plot_bokeh.hist(
    bins=np.linspace(-5, 5, 41),
    histogram_type="stacked",
    vertical_xlabel=True,
    hovertool=False,
    title="Normal distributions (Stacked)",
    line_color="black")

Histogram

Further, advanced keyword arguments for histograms are:

  • weights: A column of the DataFrame that is used as weight for the histogramm aggregation (see also numpy.histogram)
  • normed: If True, histogram values are normed to 1 (sum of histogram values=1). It is also possible to pass an integer, e.g. normed=100 would result in a histogram with percentage y-axis (sum of histogram values=100). Default: False
  • cumulative: If True, a cumulative histogram is shown. Default: False
  • show_average: If True, the average of the histogram is also shown. Default: False

Their usage is shown in these examples:

p_hist = df_hist.plot_bokeh.hist(
    y=["a", "b"],
    bins=np.arange(-4, 6.5, 0.5),
    normed=100,
    vertical_xlabel=True,
    ylabel="Share[%]",
    title="Normal distributions (normed)",
    show_average=True,
    xlim=(-4, 6),
    ylim=(0, 30),
    show_figure=False)

p_hist_cum = df_hist.plot_bokeh.hist(
    y=["a", "b"],
    bins=np.arange(-4, 6.5, 0.5),
    normed=100,
    cumulative=True,
    vertical_xlabel=True,
    ylabel="Share[%]",
    title="Normal distributions (normed & cumulative)",
    show_figure=False)

pandas_bokeh.plot_grid([[p_hist, p_hist_cum]], plot_width=450, plot_height=300)

Histogram2


Areaplot

Areaplot (kind="area") can be either drawn on top of each other or stacked. The important parameters are:

  • stacked: If True, the areaplots are stacked. If False, plots are drawn on top of each other. Default: False

  • kwargs**: Optional keyword arguments of bokeh.plotting.figure.patch


Let us consider the energy consumption split by source that can be downloaded as DataFrame via:

df_energy = pd.read_csv(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/energy/energy.csv", 
parse_dates=["Year"])
df_energy.head()
Year Oil Gas Coal Nuclear Energy Hydroelectricity Other Renewable
1970-01-01 2291.5 826.7 1467.3 17.7 265.8 5.8
1971-01-01 2427.7 884.8 1459.2 24.9 276.4 6.3
1972-01-01 2613.9 933.7 1475.7 34.1 288.9 6.8
1973-01-01 2818.1 978.0 1519.6 45.9 292.5 7.3
1974-01-01 2777.3 1001.9 1520.9 59.6 321.1 7.7

Creating the Areaplot can be achieved via:

df_energy.plot_bokeh.area(
    x="Year",
    stacked=True,
    legend="top_left",
    colormap=["brown", "orange", "black", "grey", "blue", "green"],
    title="Worldwide energy consumption split by energy source",
    ylabel="Million tonnes oil equivalent",
    ylim=(0, 16000))

areaplot

Note that the energy consumption of fossile energy is still increasing and renewable energy sources are still small in comparison 😢 !!! However, when we norm the plot using the normed keyword, there is a clear trend towards renewable energies in the last decade:

df_energy.plot_bokeh.area(
    x="Year",
    stacked=True,
    normed=100,
    legend="bottom_left",
    colormap=["brown", "orange", "black", "grey", "blue", "green"],
    title="Worldwide energy consumption split by energy source",
    ylabel="Million tonnes oil equivalent")

areaplot2

Pieplot

For Pieplots, let us consider a dataset showing the results of all Bundestags elections in Germany since 2002:

df_pie = pd.read_csv(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/Bundestagswahl/Bundestagswahl.csv")
df_pie
Partei 2002 2005 2009 2013 2017
CDU/CSU 38.5 35.2 33.8 41.5 32.9
SPD 38.5 34.2 23.0 25.7 20.5
FDP 7.4 9.8 14.6 4.8 10.7
Grünen 8.6 8.1 10.7 8.4 8.9
Linke/PDS 4.0 8.7 11.9 8.6 9.2
AfD 0.0 0.0 0.0 0.0 12.6
Sonstige 3.0 4.0 6.0 11.0 5.0

We can create a Pieplot of the last election in 2017 by specifying the "Partei" (german for party) column as the x column and the "2017" column as the y column for values:

df_pie.plot_bokeh.pie(
    x="Partei",
    y="2017",
    colormap=["blue", "red", "yellow", "green", "purple", "orange", "grey"],
    title="Results of German Bundestag Election 2017",
    )

pieplot

When you pass several columns to the y parameter (not providing the y-parameter assumes you plot all columns), multiple nested pieplots will be shown in one plot:

df_pie.plot_bokeh.pie(
    x="Partei",
    colormap=["blue", "red", "yellow", "green", "purple", "orange", "grey"],
    title="Results of German Bundestag Elections [2002-2017]",
    line_color="grey")

pieplot2

Mapplot

The mapplot method of Pandas-Bokeh allows for plotting geographic points stored in a Pandas DataFrame on an interactive map. For more advanced Geoplots for line and polygon shapes have a look at the Geoplots examples for the GeoPandas API of Pandas-Bokeh.

For mapplots, only (latitude, longitude) pairs in geographic projection (WGS84) can be plotted on a map. The basic API has the following 2 base parameters:

  • x: name of the longitude column of the DataFrame
  • y: name of the latitude column of the DataFrame

The other optional keyword arguments are discussed in the section about the GeoPandas API, e.g. category for coloring the points.

Below an example of plotting all cities for more than 1 million inhabitants:

df_mapplot = pd.read_csv(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/populated%20places/populated_places.csv")
df_mapplot.head()
name pop_max latitude longitude size
Mesa 1085394 33.423915 -111.736084 1.085394
Sharjah 1103027 25.371383 55.406478 1.103027
Changwon 1081499 35.219102 128.583562 1.081499
Sheffield 1292900 53.366677 -1.499997 1.292900
Abbottabad 1183647 34.149503 73.199501 1.183647
df_mapplot["size"] = df_mapplot["pop_max"] / 1000000
df_mapplot.plot_bokeh.map(
    x="longitude",
    y="latitude",
    hovertool_string="""<h2> @{name} </h2> 
    
                        <h3> Population: @{pop_max} </h3>""",
    tile_provider="STAMEN_TERRAIN_RETINA",
    size="size", 
    figsize=(900, 600),
    title="World cities with more than 1.000.000 inhabitants")

Mapplot

Geoplots

Pandas-Bokeh also allows for interactive plotting of Maps using GeoPandas by providing a geopandas.GeoDataFrame.plot_bokeh() method. It allows to plot the following geodata on a map :

  • Points/MultiPoints
  • Lines/MultiLines
  • Polygons/MultiPolygons

Note: t is not possible to mix up the objects types, i.e. a GeoDataFrame with Points and Lines is for example not allowed.

Les us start with a simple example using the "World Borders Dataset" . Let us first import all neccessary libraries and read the shapefile:

import geopandas as gpd
import pandas as pd
import pandas_bokeh
pandas_bokeh.output_notebook()

#Read in GeoJSON from URL:
df_states = gpd.read_file(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/states/states.geojson")
df_states.head()
STATE_NAME REGION POPESTIMATE2010 POPESTIMATE2011 POPESTIMATE2012 POPESTIMATE2013 POPESTIMATE2014 POPESTIMATE2015 POPESTIMATE2016 POPESTIMATE2017 geometry
Hawaii 4 1363817 1378323 1392772 1408038 1417710 1426320 1428683 1427538 (POLYGON ((-160.0738033454681 22.0041773479577...
Washington 4 6741386 6819155 6890899 6963410 7046931 7152818 7280934 7405743 (POLYGON ((-122.4020153103835 48.2252163723779...
Montana 4 990507 996866 1003522 1011921 1019931 1028317 1038656 1050493 POLYGON ((-111.4754253002074 44.70216236909688...
Maine 1 1327568 1327968 1328101 1327975 1328903 1327787 1330232 1335907 (POLYGON ((-69.77727626137293 44.0741483685119...
North Dakota 2 674518 684830 701380 722908 738658 754859 755548 755393 POLYGON ((-98.73043728833767 45.93827137024809...

Plotting the data on a map is as simple as calling:

df_states.plot_bokeh(simplify_shapes=10000)

US_States_1

We also passed the optional parameter simplify_shapes (~meter) to improve plotting performance (for a reference see shapely.object.simplify). The above geolayer thus has an accuracy of about 10km.

Many keyword arguments like xlabel, ylabel, xlim, ylim, title, colormap, hovertool, zooming, panning, ... for costumizing the plot are also available for the geoplotting API and can be uses as in the examples shown above. There are however also many other options especially for plotting geodata:

  • geometry_column: Specify the column that stores the geometry-information (default: "geometry")
  • hovertool_columns: Specify column names, for which values should be shown in hovertool
  • hovertool_string: If specified, this string will be used for the hovertool (@{column} will be replaced by the value of the column for the element the mouse hovers over, see also Bokeh documentation)
  • colormap_uselog: If set True, the colormapper is using a logscale. Default: False
  • colormap_range: Specify the value range of the colormapper via (min, max) tuple
  • tile_provider: Define build-in tile provider for background maps. Possible values: None, 'CARTODBPOSITRON', 'CARTODBPOSITRON_RETINA', 'STAMEN_TERRAIN', 'STAMEN_TERRAIN_RETINA', 'STAMEN_TONER', 'STAMEN_TONER_BACKGROUND', 'STAMEN_TONER_LABELS'. Default: CARTODBPOSITRON_RETINA
  • tile_provider_url: An arbitraty tile_provider_url of the form '/{Z}/{X}/{Y}*.png' can be passed to be used as background map.
  • tile_attribution: String (also HTML accepted) for showing attribution for tile source in the lower right corner
  • tile_alpha: Sets the alpha value of the background tile between [0, 1]. Default: 1

One of the most common usage of map plots are choropleth maps, where the color of a the objects is determined by the property of the object itself. There are 3 ways of drawing choropleth maps using Pandas-Bokeh, which are described below.

Categories

This is the simplest way. Just provide the category keyword for the selection of the property column:

  • category: Specifies the column of the GeoDataFrame that should be used to draw a choropleth map
  • show_colorbar: Whether or not to show a colorbar for categorical plots. Default: True

Let us now draw the regions as a choropleth plot using the category keyword (at the moment, only numerical columns are supported for choropleth plots):

df_states.plot_bokeh(
    figsize=(900, 600),
    simplify_shapes=5000,
    category="REGION",
    show_colorbar=False,
    colormap=["blue", "yellow", "green", "red"],
    hovertool_columns=["STATE_NAME", "REGION"],
    tile_provider="STAMEN_TERRAIN_RETINA")

When hovering over the states, the state-name and the region are shown as specified in the hovertool_columns argument.

US_States_2

Dropdown

By passing a list of column names of the GeoDataFrame as the dropdown keyword argument, a dropdown menu is shown above the map. This dropdown menu can be used to select the choropleth layer by the user. :

df_states["STATE_NAME_SMALL"] = df_states["STATE_NAME"].str.lower()

df_states.plot_bokeh(
    figsize=(900, 600),
    simplify_shapes=5000,
    dropdown=["POPESTIMATE2010", "POPESTIMATE2017"],
    colormap="Viridis",
    hovertool_string="""
                        <img
                        src="https://www.states101.com/img/flags/gif/small/@STATE_NAME_SMALL.gif" 
                        height="42" alt="@imgs" width="42"
                        style="float: left; margin: 0px 15px 15px 0px;"
                        border="2"></img>
                
                        <h2>  @STATE_NAME </h2>
                        <h3> 2010: @POPESTIMATE2010 </h3>
                        <h3> 2017: @POPESTIMATE2017 </h3>""",
    tile_provider_url=r"http://c.tile.stamen.com/watercolor/{Z}/{X}/{Y}.jpg",
    tile_attribution='Map tiles by <a href="http://stamen.com">Stamen Design</a>, under <a href="http://creativecommons.org/licenses/by/3.0">CC BY 3.0</a>. Data by <a href="http://openstreetmap.org">OpenStreetMap</a>, under <a href="http://www.openstreetmap.org/copyright">ODbL</a>.'
    )

US_States_3

Using hovertool_string, one can pass a string that can contain arbitrary HTML elements (including divs, images, ...) that is shown when hovering over the geographies (@{column} will be replaced by the value of the column for the element the mouse hovers over, see also Bokeh documentation).

Here, we also used an OSM tile server with watercolor style via tile_provider_url and added the attribution via tile_attribution.

Sliders

Another option for interactive choropleth maps is the slider implementation of Pandas-Bokeh. The possible keyword arguments are here:

  • slider: By passing a list of column names of the GeoDataFrame, a slider can be used to . This dropdown menu can be used to select the choropleth layer by the user.
  • slider_range: Pass a range (or numpy.arange) of numbers object to relate the sliders values with the slider columns. By passing range(0,10), the slider will have values [0, 1, 2, ..., 9], when passing numpy.arange(3,5,0.5), the slider will have values [3, 3.5, 4, 4.5]. Default: range(0, len(slider))
  • slider_name: Specifies the title of the slider. Default is an empty string.

This can be used to display the change in population relative to the year 2010:

#Calculate change of population relative to 2010:
for i in range(8):
    df_states["Delta_Population_201%d"%i] = ((df_states["POPESTIMATE201%d"%i] / df_states["POPESTIMATE2010"]) -1 ) * 100

#Specify slider columns:
slider_columns = ["Delta_Population_201%d"%i for i in range(8)]

#Specify slider-range (Maps "Delta_Population_2010" -> 2010, 
#                           "Delta_Population_2011" -> 2011, ...):
slider_range = range(2010, 2018)

#Make slider plot:
df_states.plot_bokeh(
    figsize=(900, 600),
    simplify_shapes=5000,
    slider=slider_columns,
    slider_range=slider_range,
    slider_name="Year", 
    colormap="Inferno",
    hovertool_columns=["STATE_NAME"] + slider_columns,
    title="Change of Population [%]")

US_States_4



Plot multiple geolayers

If you wish to display multiple geolayers, you can pass the Bokeh figure of a Pandas-Bokeh plot via the figure keyword to the next plot_bokeh() call:

import geopandas as gpd
import pandas_bokeh
pandas_bokeh.output_notebook()

# Read in GeoJSONs from URL:
df_states = gpd.read_file(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/states/states.geojson")
df_cities = gpd.read_file(
    r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/populated%20places/ne_10m_populated_places_simple_bigcities.geojson"
)
df_cities["size"] = df_cities.pop_max / 400000

#Plot shapes of US states (pass figure options to this initial plot):
figure = df_states.plot_bokeh(
    figsize=(800, 450),
    simplify_shapes=10000,
    show_figure=False,
    xlim=[-170, -80],
    ylim=[10, 70],
    category="REGION",
    colormap="Dark2",
    legend="States",
    show_colorbar=False,
)

#Plot cities as points on top of the US states layer by passing the figure:
df_cities.plot_bokeh(
    figure=figure,         # <== pass figure here!
    category="pop_max",
    colormap="Viridis",
    colormap_uselog=True,
    size="size",
    hovertool_string="""<h1>@name</h1>
                        <h3>Population: @pop_max </h3>""",
    marker="inverted_triangle",
    legend="Cities",
)

Multiple Geolayers


Point & Line plots:

Below, you can see an example that use Pandas-Bokeh to plot point data on a map. The plot shows all cities with a population larger than 1.000.000. For point plots, you can select the marker as keyword argument (since it is passed to bokeh.plotting.figure.scatter). Here an overview of all available marker types:

gdf = gpd.read_file(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/populated%20places/ne_10m_populated_places_simple_bigcities.geojson")
gdf["size"] = gdf.pop_max / 400000

gdf.plot_bokeh(
    category="pop_max",
    colormap="Viridis",
    colormap_uselog=True,
    size="size",
    hovertool_string="""<h1>@name</h1>
                        <h3>Population: @pop_max </h3>""",
    xlim=[-15, 35],
    ylim=[30,60],
    marker="inverted_triangle");

Pointmap

In a similar way, also GeoDataFrames with (multi)line shapes can be drawn using Pandas-Bokeh.



Colorbar formatting:

If you want to display the numerical labels on your colorbar with an alternative to the scientific format, you can pass in a one of the bokeh number string formats or an instance of one of the bokeh.models.formatters to the colorbar_tick_format argument in the geoplot

An example of using the string format argument:

df_states = gpd.read_file(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/states/states.geojson")

df_states["STATE_NAME_SMALL"] = df_states["STATE_NAME"].str.lower()

# pass in a string format to colorbar_tick_format to display the ticks as 10m rather than 1e7
df_states.plot_bokeh(
    figsize=(900, 600),
    category="POPESTIMATE2017",
    simplify_shapes=5000,    
    colormap="Inferno",
    colormap_uselog=True,
    colorbar_tick_format="0.0a")

colorbar_tick_format with string argument

An example of using the bokeh PrintfTickFormatter:

df_states = gpd.read_file(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/states/states.geojson")

df_states["STATE_NAME_SMALL"] = df_states["STATE_NAME"].str.lower()

for i in range(8):
    df_states["Delta_Population_201%d"%i] = ((df_states["POPESTIMATE201%d"%i] / df_states["POPESTIMATE2010"]) -1 ) * 100

# pass in a PrintfTickFormatter instance colorbar_tick_format to display the ticks with 2 decimal places  
df_states.plot_bokeh(
    figsize=(900, 600),
    category="Delta_Population_2017",
    simplify_shapes=5000,    
    colormap="Inferno",
    colorbar_tick_format=PrintfTickFormatter(format="%4.2f"))

colorbar_tick_format with bokeh.models.formatter_instance


Outputs, Formatting & Layouts

Output options

The pandas.DataFrame.plot_bokeh API has the following additional keyword arguments:

  • show_figure: If True, the resulting figure is shown (either in the notebook or exported and shown as HTML file, see Basics. If False, None is returned. Default: True
  • return_html: If True, the method call returns an HTML string that contains all Bokeh CSS&JS resources and the figure embedded in a div. This HTML representation of the plot can be used for embedding the plot in an HTML document. Default: False

If you have a Bokeh figure or layout, you can also use the pandas_bokeh.embedded_html function to generate an embeddable HTML representation of the plot. This can be included into any valid HTML (note that this is not possible directly with the HTML generated by the pandas_bokeh.output_file output option, because it includes an HTML header). Let us consider the following simple example:

#Import Pandas and Pandas-Bokeh (if you do not specify an output option, the standard is
#output_file):
import pandas as pd
import pandas_bokeh

#Create DataFrame to Plot:
import numpy as np
x = np.arange(-10, 10, 0.1)
sin = np.sin(x)
cos = np.cos(x)
tan = np.tan(x)
df = pd.DataFrame({"x": x, "sin(x)": sin, "cos(x)": cos, "tan(x)": tan})

#Make Bokeh plot from DataFrame using Pandas-Bokeh. Do not show the plot, but export
#it to an embeddable HTML string:
html_plot = df.plot_bokeh(
    kind="line",
    x="x",
    y=["sin(x)", "cos(x)", "tan(x)"],
    xticks=range(-20, 20),
    title="Trigonometric functions",
    show_figure=False,
    return_html=True,
    ylim=(-1.5, 1.5))

#Write some HTML and embed the HTML plot below it. For production use, please use
#Templates and the awesome Jinja library.
html = r"""
<script type="text/x-mathjax-config">
  MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}});
</script>
<script type="text/javascript"
  src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>

<h1> Trigonometric functions </h1>

<p> The basic trigonometric functions are:</p>

<p>$ sin(x) $</p>
<p>$ cos(x) $</p>
<p>$ tan(x) = \frac{sin(x)}{cos(x)}$</p>

<p>Below is a plot that shows them</p>

""" + html_plot

#Export the HTML string to an external HTML file and show it:
with open("test.html" , "w") as f:
    f.write(html)
    
import webbrowser
webbrowser.open("test.html")

This code will open up a webbrowser and show the following page. As you can see, the interactive Bokeh plot is embedded nicely into the HTML layout. The return_html option is ideal for the use in a templating engine like Jinja.

Embedded HTML

Auto Scaling Plots

For single plots that have a number of x axis values or for larger monitors, you can auto scale the figure to the width of the entire jupyter cell by setting the sizing_mode parameter.

df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])

df.plot_bokeh(kind="bar", figsize=(500, 200), sizing_mode="scale_width")

Scaled Plot

The figsize parameter can be used to change the height and width as well as act as a scaling multiplier against the axis that is not being scaled.

Number formats

To change the formats of numbers in the hovertool, use the number_format keyword argument. For a documentation about the format to pass, have a look at the Bokeh documentation.Let us consider some examples for the number 3.141592653589793:

Format Output
0 3
0.000 3.141
0.00 $ 3.14 $

This number format will be applied to all numeric columns of the hovertool. If you want to make a very custom or complicated hovertool, you should probably use the hovertool_string keyword argument, see e.g. this example. Below, we use the number_format parameter to specify the "Stock Price" format to 2 decimal digits and an additional $ sign.

import numpy as np

#Lineplot:
np.random.seed(42)
df = pd.DataFrame({
    "Google": np.random.randn(1000) + 0.2,
    "Apple": np.random.randn(1000) + 0.17
},
                  index=pd.date_range('1/1/2000', periods=1000))
df = df.cumsum()
df = df + 50
df.plot_bokeh(
    kind="line",
    title="Apple vs Google",
    xlabel="Date",
    ylabel="Stock price [$]",
    yticks=[0, 100, 200, 300, 400],
    ylim=(0, 400),
    colormap=["red", "blue"],
    number_format="1.00 $")

Number format

Suppress scientific notation for axes

If you want to suppress the scientific notation for axes, you can use the disable_scientific_axes parameter, which accepts one of "x", "y", "xy":

df = pd.DataFrame({"Animal": ["Mouse", "Rabbit", "Dog", "Tiger", "Elefant", "Wale"],
                   "Weight [g]": [19, 3000, 40000, 200000, 6000000, 50000000]})
p_scientific = df.plot_bokeh(x="Animal", y="Weight [g]", show_figure=False)
p_non_scientific = df.plot_bokeh(x="Animal", y="Weight [g]", disable_scientific_axes="y", show_figure=False,)
pandas_bokeh.plot_grid([[p_scientific, p_non_scientific]], plot_width = 450)

Number format

Dashboard Layouts

As shown in the Scatterplot Example, combining plots with plots or other HTML elements is straighforward in Pandas-Bokeh due to the layout capabilities of Bokeh. The easiest way to generate a dashboard layout is using the pandas_bokeh.plot_grid method (which is an extension of bokeh.layouts.gridplot):

import pandas as pd
import numpy as np
import pandas_bokeh
pandas_bokeh.output_notebook()

#Barplot:
data = {
    'fruits':
    ['Apples', 'Pears', 'Nectarines', 'Plums', 'Grapes', 'Strawberries'],
    '2015': [2, 1, 4, 3, 2, 4],
    '2016': [5, 3, 3, 2, 4, 6],
    '2017': [3, 2, 4, 4, 5, 3]
}
df = pd.DataFrame(data).set_index("fruits")
p_bar = df.plot_bokeh(
    kind="bar",
    ylabel="Price per Unit [€]",
    title="Fruit prices per Year",
    show_figure=False)

#Lineplot:
np.random.seed(42)
df = pd.DataFrame({
    "Google": np.random.randn(1000) + 0.2,
    "Apple": np.random.randn(1000) + 0.17
},
                  index=pd.date_range('1/1/2000', periods=1000))
df = df.cumsum()
df = df + 50
p_line = df.plot_bokeh(
    kind="line",
    title="Apple vs Google",
    xlabel="Date",
    ylabel="Stock price [$]",
    yticks=[0, 100, 200, 300, 400],
    ylim=(0, 400),
    colormap=["red", "blue"],
    show_figure=False)

#Scatterplot:
from sklearn.datasets import load_iris
iris = load_iris()
df = pd.DataFrame(iris["data"])
df.columns = iris["feature_names"]
df["species"] = iris["target"]
df["species"] = df["species"].map(dict(zip(range(3), iris["target_names"])))
p_scatter = df.plot_bokeh(
    kind="scatter",
    x="petal length (cm)",
    y="sepal width (cm)",
    category="species",
    title="Iris DataSet Visualization",
    show_figure=False)

#Histogram:
df_hist = pd.DataFrame({
    'a': np.random.randn(1000) + 1,
    'b': np.random.randn(1000),
    'c': np.random.randn(1000) - 1
},
                       columns=['a', 'b', 'c'])

p_hist = df_hist.plot_bokeh(
    kind="hist",
    bins=np.arange(-6, 6.5, 0.5),
    vertical_xlabel=True,
    normed=100,
    hovertool=False,
    title="Normal distributions",
    show_figure=False)

#Make Dashboard with Grid Layout:
pandas_bokeh.plot_grid([[p_line, p_bar], 
                        [p_scatter, p_hist]], plot_width=450)

Dashboard Layout

Using a combination of row and column elements (see also Bokeh Layouts) allow for a very easy general arrangement of elements. An alternative layout to the one above is:

p_line.plot_width = 900
p_hist.plot_width = 900

layout = pandas_bokeh.column(p_line,
                pandas_bokeh.row(p_scatter, p_bar),
                p_hist)

pandas_bokeh.show(layout)

Alternative Dashboard Layout




Release Notes

0.0.1

In this early version, the following plot types are supported:

  • line
  • point
  • scatter
  • bar
  • histogram

In the near future many more will be implemented as horizontal barplot, boxplots,pie-charts, etc.

Pandas-Bokeh is a high-level API for Bokeh. Nevertheless there are many options for customizing the plots, for example:

  • figsize: Choose width & height of the plot
  • title: Sets title of the plot
  • xlim/ylim: Set visibler range of plot for x- and y-axis (also works for datetime x-axis)
  • xlabel/ylabel: Set x- and y-labels
  • logx/logy: Set log-scale on x-/y-axis
  • xticks/yticks: Explicitly set the ticks on the axes
  • colormap: Defines the colors to plot. Can be either a list of colors or the name of a Bokeh color palette
  • hovertool: If True a Hovertool is active, else if False no Hovertool is drawn.

Plots like scatterplot or histogram also have many more additional customization options.

0.0.2:

Changes:

  • Fixed Error when importing Pandas-Bokeh in Python 2.7
  • Small refactoring and Black code formatting

0.1

Changes:

General

  • WebGL now as plotting backend as default
  • Code Refactoring & many bugfixes
  • Added panning/zooming keyword options
  • Toolbar now visible per default
  • Kwargs names are checked in columns of DataFrame/Series and kept if there is a match, such that additional keyword arguments can be used to specify for example line_width or alpha value of plots
  • Improved Functionalities (row, column) for Pandas-Bokeh Layouts
  • Added <hovertool_string> for providing an HTML string to the hovertool
  • Many additional customization arguments

DataFrames

  • Additional plot types:
    • areaplots (with stacked and normed kwargs)
    • horizontal & stacked barplots
    • piecharts
    • mapplot
  • Added accessors similar to the pandas.DataFrame.plot API:
    • df.plot_bokeh(kind="line", ...)df.plot_bokeh.line(...)
    • df.plot_bokeh(kind="bar", ...)df.plot_bokeh.bar(...)
    • df.plot_bokeh(kind="hist", ...)df.plot_bokeh.hist(...)
    • ...
  • Smarter x-axis formatting for barplots when using datetimes
  • Histogram parameter also accepts integers (to specify number of bins)
  • Added support for categorical x-axis for all plot types (line, scatter, area, ...)
  • Smarter autodetection of x- and y-labels

GeoDataFrames

  • Added <tile_attribution> & <tile_alpha> parameter for background tiles of geoplots
  • Support for xlim & ylim in WGS84 (Latitude/Longitude) for geoplots
  • Greatly Improved performance for Polygon Geoplots

0.1.1

  • Refactoring of mapplot API (calls GeoPandas API of Pandas-Bokeh), such that all options of GeoPandas.GeoDataFrame.plot_bokeh are available.
  • Allow passing a Pandas_Bokeh figure to overlay geoplots (not fully supported for category/dropdown/slider yet)
  • Bug Fix for new Pandas 0.24 release
  • Implementation of first tests

0.2

  • PySpark support
  • Zeppelin Notebooks support
  • Added "disable_scientific_axes" option for Plots
  • Bugfixes
  • Implementation of number_format keyword for line, scatterplots
  • Official support also for Python 3.4 & 3.5

0.3

  • Official Pandas backend switch support for pandas >= 0.25
  • Add stepplot
  • Add support for colormap ticker formatting in Geoplots
  • Support for multipolygons & holes in Geoplots
  • Bugfixes
  • conda support

0.4

  • Rangetool support
  • Autoscaling support using the sizing_mode keyword
  • Bugfixes

0.4.1

  • speedup when plotting GeoDataFrames

0.4.2

  • Bugfixes

0.4.3

  • Bugfixes (#55-Multipolygon plotting error)
  • Improvements with sizing & zooming (#61)

0.5

  • Implementation of geometry_column-parameter for geoplots (#14 Plotting LineString)
  • Fix of deprecation warnings for Bokeh >= 2.0 and future minimum requirement Bokeh>=2.0 (#51-BokehDeprecationWarnings with Bokeh v1.4.0, #59-Bokeh 2.0 is imminent)
  • Fix of Problem with Datetime Hovertool columns with Bokeh>=2.0 (#60-Hovertool datetime shows as percentage.)
  • Fix broken Dropdown and Slider for Geoplots (#68 Not compatible with Bokeh 2.x)
  • Added fontsize settings for Labels, Title and Ticks

0.5.1

  • bugfixes

0.5.2

  • bugfixes

0.5.3

  • keep aspect ratio for map-plots
  • add support for Bokeh 2.3
Comments
  • BokehDeprecationWarnings with Bokeh v1.4.0

    BokehDeprecationWarnings with Bokeh v1.4.0

    The latest release of the Bokeh package has deprecated the legend keyword, so the output of all plots now includes the following message:

    BokehDeprecationWarning: 'legend' keyword is deprecated, use explicit 'legend_label', 'legend_field', or 'legend_group' keywords instead

    opened by lordsutch 16
  • Issue with Map Plot

    Issue with Map Plot

    When I try to run the Mapplot example, I get the following error when I try to use plot_bokeh.map:

    AttributeError: 'function' object has no attribute 'map'

    The whole code is as follows:

    import pandas as pd
    import pandas_bokeh
    pandas_bokeh.output_notebook()
    
    df_mapplot = pd.read_csv(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/Documentation/Testdata/populated%20places/populated_places.csv")
    
    df_mapplot["size"] = df_mapplot["pop_max"] / 1000000
    df_mapplot.plot_bokeh.map(
        x="longitude",
        y="latitude",
        hovertool_string="""<h2> @{name} </h2> 
        
                            <h3> Population: @{pop_max} </h3>""",
        tile_provider="STAMEN_TERRAIN_RETINA",
        size="size", 
        figsize=(900, 600),
        title="World cities with more than 1.000.000 inhabitants")
    
    bug 
    opened by joeborrello 14
  • Legend issues with pandas-bokeh

    Legend issues with pandas-bokeh

    Hello - I am experiencing the following issues with pandas_bokeh:

    1. When I plot a large number of timeseries, the legend reaches the maximum number and does not allow scrolling to reveal the rest of the timeseries that have been plotted.
    2. Datetime works on the x-axis but on hover it is interpreted in a weird format.

    The following plot demonstrates both problems.

    bokeh

    opened by nrapanos 11
  • Styling

    Styling

    Patrik,

    First let me congratulate you on an amazing piece of software. I appreciate all of your hard work! My comments below pertain to histograms.

    • It would be great if the user had the ability to change the numbers from scientific to regular numbers on the x axis.
    • It would be good if you could use actual text of your choosing on the different axes. Like vertical_ylabel="lbs"
    • Lets say your pandas frame has two columns that are scaled quite a bit differently. It would be wonderful if you could have both data frames overlayed on the same graph with two x axes. Stacked with one above the other (different that overlain). It would be good if the user could pick on the variable they want to use.

    Thanks again.

    enhancement 
    opened by tgmueller 11
  • added option to scale plots automatically based off screen width

    added option to scale plots automatically based off screen width

    Added keyword arg sizing_mode so plots with large amount of x axis values aren't compressed. It also allows figures to be scaled to the width or height of the cell so it is compatible across screen types instead of hard coding or playing around with the figsize.

    opened by Ashton-Sidhu 10
  • Attribute Error in DataFrames

    Attribute Error in DataFrames

    Hello,

    I am currently running Numpy v1.15.4, Pandas v0.23.4, Pandas-Bokeh v0.3.1 and find the following error as I run the example code:

    import numpy as np import pandas as pd

    np.random.seed(42) df = pd.DataFrame({"Google": np.random.randn(1000)+0.2, "Apple": np.random.randn(1000)+0.17}, index=pd.date_range('1/1/2000', periods=1000)) df = df.cumsum() df = df + 50 df.plot_bokeh(kind="line")

    AttributeError: 'FramePlotMethods' object has no attribute '_data'

    Checking previous issues I saw this could have been fixed in the latest version, but maybe not yet? The above issue is not present in Series objects. Any help will be appreciated.

    Many thanks for this useful package!

    bug 
    opened by NRGPlus79 10
  • ValueError: Only LayoutDOM items can be inserted into a grid

    ValueError: Only LayoutDOM items can be inserted into a grid

    Hi PatrikHlobil,

    Thank you for the nice article on Pandas-Bokeh. However, when I try to create a grid am getting this error "ValueError: Only LayoutDOM items can be inserted into a grid". Kindly help me out. Attached is my code snippet.

    Thanks,, Victor.

    import pandas as pd import pandas_bokeh import numpy as np from bokeh.layouts import row, column import sqlalchemy as sql from bokeh.models import Button, ColumnDataSource, Range1d, Toolbar, ToolbarBox from bokeh.models.layouts import LayoutDOM, Box, Row, Column, GridBox, Spacer, WidgetBox from bokeh.models.tools import HoverTool, WheelZoomTool, PanTool, CrosshairTool, LassoSelectTool from bokeh.layouts import layout, gridplot from bokeh.plotting import curdoc, figure

    pandas_bokeh.output_file("kisovi.html")

    Read in MySQL Data

    connect_string = 'mysql://root:[email protected]/zabbix' sql_engine = sql.create_engine(connect_string)

    df_now = pd.read_sql(""" select hosts.host as Hostname, key_ as key_value, max(history.value) as "Max CPU Load",avg(history.value) as "Average CPU Load" ,
    min(history.value) as "Min CPU Load" from history, items, hosts where hosts.hostid=items.hostid and hosts.host NOT LIKE '%%Template%%' AND host NOT LIKE '%%{%%' and items.key_ like 'system.cpu.load[percpu,avg1]' and items.value_type=0 and history.itemid=items.itemid group by items.itemid, key_value order by hosts.host asc; """ , sql_engine)

    df_now = pd.DataFrame(df_now, columns=['Hostname','Max CPU Load', 'Average CPU Load', 'Min CPU Load']) df_now = pd.DataFrame(df_now).set_index("Hostname") df_now.plot_bokeh( kind="bar", ylabel="CPU Load", title="Current CPU Load", show_figure=True, return_html=True, alpha=0.6) p5=df_now

    df_5 = pd.read_sql(""" select hosts.host as Hostname, key_ as key_value, max(history.value) as "Max CPU Load",avg(history.value) as "Average CPU Load" ,
    min(history.value) as "Min CPU Load" from history, items, hosts where hosts.hostid=items.hostid and hosts.host NOT LIKE '%%Template%%' AND host NOT LIKE '%%{%%' and items.key_ like 'system.cpu.load[percpu,avg5]' and items.value_type=0 and history.itemid=items.itemid group by items.itemid, key_value order by hosts.host asc; """ , sql_engine)

    df_5 = pd.DataFrame(df_5, columns=['Hostname','Max CPU Load', 'Average CPU Load', 'Min CPU Load']) df_5 = pd.DataFrame(df_5).set_index("Hostname") df_5.plot_bokeh( kind="bar", ylabel="CPU Load", title="5 Mins CPU Load", show_figure=True, return_html=True, alpha=0.6) p6=df_5

    df_15 = pd.read_sql(""" select hosts.host as Hostname, key_ as key_value, max(history.value) as "Max CPU Load",avg(history.value) as "Average CPU Load" ,
    min(history.value) as "Min CPU Load" from history, items, hosts where hosts.hostid=items.hostid and hosts.host NOT LIKE '%%Template%%' AND host NOT LIKE '%%{%%' and items.key_ like 'system.cpu.load[percpu,avg5]' and items.value_type=0 and history.itemid=items.itemid group by items.itemid, key_value order by hosts.host asc; """ , sql_engine)

    df_15 = pd.DataFrame(df_15, columns=['Hostname','Max CPU Load', 'Average CPU Load', 'Min CPU Load']) df_15 = pd.DataFrame(df_15).set_index("Hostname") df_15.plot_bokeh( kind="bar", ylabel="CPU Load", title="15 Mins CPU Load", show_figure=True, return_html=True, alpha=0.6) p7=df_15

    #row([plot_1, plot_2]) #row(children=[widget_box_1, plot_1], sizing_mode='stretch_both')

    #layout=row([p5, p6, p7], merge_tools=True)

    #row(children=[p5, p6, p7], sizing_mode='stretch_both')

    #column([p5, p6, p7]) #column(children=[widget_1, p5], sizing_mode='stretch_both')

    #curdoc().add_root(layout)

    #gridplot([[p5, p6], [p7]]) #gridplot([p5, p6, p7], ncols=2, plot_width=200, plot_height=100) #pandas_bokeh.plot_grid(

    children=[[p5, p6, p7]],

    toolbar_location='right',

    sizing_mode='stretch_both',

    toolbar_options=dict(logo='gray')

    #)

    pandas_bokeh.plot_grid([p5, p6, p7], plot_width=450)

    #pandas_bokeh.plot_grid()

    opened by victorkisovi 10
  • Conda installation failed : HTTP 000 - Connection Failed Error

    Conda installation failed : HTTP 000 - Connection Failed Error

    Hi,

    I have aproblem when I am trying to run the following comand to install the Pandas-Bokeh package for my Anaconda 4.8.2 + Python 3.8 for Win 64:

    conda install -c patrikhlobil pandas-bokeh

    I keep getting this message:

    An HTTP error occured when trying to retrieve this URL.

    Although I was able to install "Pandas-Bokeh" using a pip command, my jupyter notebook is unable to import it, giving an Error: "ModuleNotFoundError: No module named 'pandas_bokeh' "

    opened by hamnas 9
  • Bokeh v1.1.0 deprecation warnings

    Bokeh v1.1.0 deprecation warnings

    Using pandas_bokeh v0.1.1 with Bokeh v1.1.0 gives me the following deprecation warnings:

    BokehDeprecationWarning: CARTODBPOSITRON was deprecated in Bokeh 1.1.0 and will be removed, use get_provider(Vendors.CARTODBPOSITRON) instead.
    BokehDeprecationWarning: CARTODBPOSITRON_RETINA was deprecated in Bokeh 1.1.0 and will be removed, use get_provider(Vendors.CARTODBPOSITRON_RETINA) instead.
    BokehDeprecationWarning: STAMEN_TERRAIN was deprecated in Bokeh 1.1.0 and will be removed, use get_provider(Vendors.STAMEN_TERRAIN) instead.
    BokehDeprecationWarning: STAMEN_TERRAIN_RETINA was deprecated in Bokeh 1.1.0 and will be removed, use get_provider(Vendors.STAMEN_TERRAIN_RETINA) instead.
    BokehDeprecationWarning: STAMEN_TONER was deprecated in Bokeh 1.1.0 and will be removed, use get_provider(Vendors.STAMEN_TONER) instead.
    BokehDeprecationWarning: STAMEN_TONER_BACKGROUND was deprecated in Bokeh 1.1.0 and will be removed, use get_provider(Vendors.STAMEN_TONER_BACKGROUND) instead.
    BokehDeprecationWarning: STAMEN_TONER_LABELS was deprecated in Bokeh 1.1.0 and will be removed, use get_provider(Vendors.STAMEN_TONER_LABELS) instead.
    BokehDeprecationWarning: CARTODBPOSITRON was deprecated in Bokeh 1.1.0 and will be removed, use get_provider(Vendors.CARTODBPOSITRON) instead.
    BokehDeprecationWarning: CARTODBPOSITRON_RETINA was deprecated in Bokeh 1.1.0 and will be removed, use get_provider(Vendors.CARTODBPOSITRON_RETINA) instead.
    BokehDeprecationWarning: STAMEN_TERRAIN was deprecated in Bokeh 1.1.0 and will be removed, use get_provider(Vendors.STAMEN_TERRAIN) instead.
    BokehDeprecationWarning: STAMEN_TERRAIN_RETINA was deprecated in Bokeh 1.1.0 and will be removed, use get_provider(Vendors.STAMEN_TERRAIN_RETINA) instead.
    BokehDeprecationWarning: STAMEN_TONER was deprecated in Bokeh 1.1.0 and will be removed, use get_provider(Vendors.STAMEN_TONER) instead.
    BokehDeprecationWarning: STAMEN_TONER_BACKGROUND was deprecated in Bokeh 1.1.0 and will be removed, use get_provider(Vendors.STAMEN_TONER_BACKGROUND) instead.
    BokehDeprecationWarning: STAMEN_TONER_LABELS was deprecated in Bokeh 1.1.0 and will be removed, use get_provider(Vendors.STAMEN_TONER_LABELS) instead.
    
    bug 
    opened by heuvel 9
  • Lineplot Rangetool broken?

    Lineplot Rangetool broken?

    Hi, when I execute your sample code in Jupyter:

    ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
    df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list('ABCD'))
    df = df.cumsum()
    df.plot_bokeh(rangetool=True)
    

    The following Error appears:


    AttributeError Traceback (most recent call last) in 3 df = df.cumsum() 4 ----> 5 df.plot_bokeh(rangetool=True)

    ~/anaconda3/envs/E1lib/python3.7/site-packages/pandas_bokeh/plot.py in call(self, *args, **kwargs) 1735 1736 def call(self, *args, **kwargs): -> 1737 return plot(self.df, *args, **kwargs) 1738 1739 @property

    ~/anaconda3/envs/E1/lib/python3.7/site-packages/pandas_bokeh/plot.py in plot(df_in, x, y, kind, figsize, use_index, title, legend, logx, logy, xlabel, ylabel, xticks, yticks, xlim, ylim, fontsize, color, colormap, category, histogram_type, stacked, weights, bins, normed, cumulative, show_average, plot_data_points, plot_data_points_size, number_format, disable_scientific_axes, show_figure, return_html, panning, zooming, toolbar_location, hovertool, hovertool_string, vertical_xlabel, webgl, **kwargs) 477 hovertool_string, 478 number_format, --> 479 **kwargs 480 ) 481

    ~/anaconda3/envs/E1/lib/python3.7/site-packages/pandas_bokeh/plot.py in lineplot(p, source, data_cols, colormap, hovertool, xlabelname, x_axis_type, plot_data_points, plot_data_points_size, hovertool_string, number_format, **kwargs) 1013 hovertool_string=hovertool_string, 1014 number_format=number_format, -> 1015 **kwargs 1016 ) 1017

    ~/anaconda3/envs/E1/lib/python3.7/site-packages/pandas_bokeh/plot.py in _base_lineplot(linetype, p, source, data_cols, colormap, hovertool, xlabelname, x_axis_type, plot_data_points, plot_data_points_size, hovertool_string, number_format, **kwargs) 951 source=source, 952 color=color, --> 953 **kwargs 954 ) 955

    fakesource in line(self, x, y, **kwargs)

    ~/anaconda3/envs/E1lib/python3.7/site-packages/bokeh/plotting/helpers.py in func(self, **kwargs) 855 mglyph_ca = None 856 --> 857 glyph = _make_glyph(glyphclass, kwargs, glyph_ca) 858 nsglyph = _make_glyph(glyphclass, kwargs, nsglyph_ca) 859 sglyph = _make_glyph(glyphclass, kwargs, sglyph_ca)

    ~/anaconda3/envs/E1/lib/python3.7/site-packages/bokeh/plotting/helpers.py in _make_glyph(glyphclass, kws, extra) 396 kws = kws.copy() 397 kws.update(extra) --> 398 return glyphclass(**kws) 399 400

    ~/anaconda3/envs/E1/lib/python3.7/site-packages/bokeh/model.py in init(self, **kwargs) 305 kwargs.pop("id", None) 306 --> 307 super(Model, self).init(**kwargs) 308 default_theme.apply_to_model(self) 309

    ~/anaconda3/envs/E1/lib/python3.7/site-packages/bokeh/core/has_props.py in init(self, **properties) 251 252 for name, value in properties.items(): --> 253 setattr(self, name, value) 254 255 def setattr(self, name, value):

    ~/anaconda3/envs/E1/lib/python3.7/site-packages/bokeh/core/has_props.py in setattr(self, name, value) 286 287 raise AttributeError("unexpected attribute '%s' to %s, %s attributes are %s" % --> 288 (name, self.class.name, text, nice_join(matches))) 289 290 def str(self):

    AttributeError: unexpected attribute 'rangetool' to Line, possible attributes are

    js_event_callbacks, js_property_callbacks, line_alpha, line_cap, line_color, line_dash, line_dash_offset, line_join, line_width, name, subscribed_events, tags, x or y

    opened by Kladderadatasch 8
  • Colorbar tick formatting

    Colorbar tick formatting

    wwymak [9:52 PM]

    • implementation for adding a tick formatting option to the colorbars in geoplot and scatterplot as an alternative to the default scientific notation.
    • options for this field are:
      • None (the default scientific notation)
      • string in one of the bokeh formats which gets converted to a NumeralTickFormatter
      • an instance of one of the subclasses of bokeh.models.TickFormatter, which gets passed as is to the colorbar options.

    @PatrikHlobil this works for the geoplot but I am not sure what your testing procedure is (and also what you would like me to do for the documentation?)

    opened by wwymak 7
  • different types of chart kind on the same html plot

    different types of chart kind on the same html plot

    Gents, I'm sorry, still having issues figuring out how to plot 2 lines of different style in HTML.

    Let's say here's an example. df would have different columns. I want to display one of it as normal line (like below), but some others as discrete arrows (to show my signals) or circles or whatever, to mark the main line with some entries/exists. Also how can I make solid vertical line for xticks? They're kind of very pale. Thanks!

    with open("osc_multimodel_forecast_plot.html" , "w") as f: ->html = df.plot_bokeh(kind='line', title="BB S&P", xticks=xticks, vertical_xlabel=True,figsize=(2000, 1000), show_figure=True,return_html=True, xlabel='date', ylabel='Price', hovertool=True, zooming=True,panning=True, legend='top_right') ->f.write(html+"\n") f.close()

    opened by algomaschine 0
  • Bump pyspark from 2.4.2 to 3.2.2 in /Tests

    Bump pyspark from 2.4.2 to 3.2.2 in /Tests

    Bumps pyspark from 2.4.2 to 3.2.2.

    Commits
    • 78a5825 Preparing Spark release v3.2.2-rc1
    • ba978b3 [SPARK-39099][BUILD] Add dependencies to Dockerfile for building Spark releases
    • 001d8b0 [SPARK-37554][BUILD] Add PyArrow, pandas and plotly to release Docker image d...
    • 9dd4c07 [SPARK-37730][PYTHON][FOLLOWUP] Split comments to comply pycodestyle check
    • bc54a3f [SPARK-37730][PYTHON] Replace use of MPLPlot._add_legend_handle with MPLPlot....
    • c5983c1 [SPARK-38018][SQL][3.2] Fix ColumnVectorUtils.populate to handle CalendarInte...
    • 32aff86 [SPARK-39447][SQL][3.2] Avoid AssertionError in AdaptiveSparkPlanExec.doExecu...
    • be891ad [SPARK-39551][SQL][3.2] Add AQE invalid plan check
    • 1c0bd4c [SPARK-39656][SQL][3.2] Fix wrong namespace in DescribeNamespaceExec
    • 3d084fe [SPARK-39677][SQL][DOCS][3.2] Fix args formatting of the regexp and like func...
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
  • [Bug] AttributeError: unexpected attribute 'plot_width'

    [Bug] AttributeError: unexpected attribute 'plot_width'

    Hello,

    plot_bokeh worked for me last week, but it seems that there were some updates in pandas or somewhere else and it stopped working. This code from the example (or any other)

    import numpy as np
    
    np.random.seed(42)
    df = pd.DataFrame({"Google": np.random.randn(1000)+0.2, 
                       "Apple": np.random.randn(1000)+0.17}, 
                       index=pd.date_range('1/1/2000', periods=1000))
    df = df.cumsum()
    df = df + 50
    df.plot_bokeh(kind="line", plot_width=None) 
    

    produces the following error:

    ---------------------------------------------------------------------------
    AttributeError                            Traceback (most recent call last)
    Input In [45], in <cell line: 9>()
          7 df = df.cumsum()
          8 df = df + 50
    ----> 9 df.plot_bokeh(kind="line", plot_width=None)
    
    File /opt/conda/lib/python3.10/site-packages/pandas_bokeh/plot.py:1785, in FramePlotMethods.__call__(self, *args, **kwargs)
       1784 def __call__(self, *args, **kwargs):
    -> 1785     return plot(self.df, *args, **kwargs)
    
    File /opt/conda/lib/python3.10/site-packages/pandas_bokeh/plot.py:439, in plot(df_in, x, y, kind, figsize, use_index, title, legend, logx, logy, xlabel, ylabel, xticks, yticks, xlim, ylim, fontsize_title, fontsize_label, fontsize_ticks, fontsize_legend, color, colormap, category, histogram_type, stacked, weights, bins, normed, cumulative, show_average, plot_data_points, plot_data_points_size, number_format, disable_scientific_axes, show_figure, return_html, panning, zooming, sizing_mode, toolbar_location, hovertool, hovertool_string, rangetool, vertical_xlabel, x_axis_location, webgl, reuse_plot, **kwargs)
        432     xlabelname = (
        433         figure_options["x_axis_label"]
        434         if figure_options.get("x_axis_label", "") != ""
        435         else "x"
        436     )
        438 # Create Figure for plotting:
    --> 439 p = figure(**figure_options)
        440 if "x_axis_type" not in figure_options:
        441     figure_options["x_axis_type"] = None
    
    File /opt/conda/lib/python3.10/site-packages/bokeh/plotting/_figure.py:184, in figure.__init__(self, *arg, **kw)
        182 for name in kw.keys():
        183     if name not in names:
    --> 184         self._raise_attribute_error_with_matches(name, names | opts.properties())
        186 super().__init__(*arg, **kw)
        188 self.x_range = get_range(opts.x_range)
    
    File /opt/conda/lib/python3.10/site-packages/bokeh/core/has_props.py:369, in HasProps._raise_attribute_error_with_matches(self, name, properties)
        366 if not matches:
        367     matches, text = sorted(properties), "possible"
    --> 369 raise AttributeError(f"unexpected attribute {name!r} to {self.__class__.__name__}, {text} attributes are {nice_join(matches)}")
    
    AttributeError: unexpected attribute 'plot_width' to figure, similar attributes are outer_width, width or min_width
    

    I use Python 3.10 in Jupyter Notebooks, pandas_bokeh installed with pip.

    It seems that other people started having the same problem quite recently:

    https://stackoverflow.com/questions/74280959/attributeerror-unexpected-attribute-plot-width-to-figure-similar-attributes

    opened by elhele 1
  • Bokeh 3.0 changes

    Bokeh 3.0 changes

    FYI @PatrikHlobil here are some failures of a few of the dowmstream tests on the 3.0 branch:

    https://github.com/bokeh/bokeh/runs/8297757543?check_suite_focus=true

    You may want to pin version <3 or make updates

    opened by bryevdv 0
  • Deprecation warning for Shapely

    Deprecation warning for Shapely

    Hello, Running the plot_bokeh() function on a DataFrame, I now have the following Deprecation Warning:

    /home/eloi/.local/lib/python3.10/site-packages/pandas_bokeh/geoplot.py:118: ShapelyDeprecationWarning: Iteration over multi-part geometries is deprecated and will be removed in Shapely 2.0. Use the `geoms` property to access the constituent parts of a multi-part geometry.
      for polygon in geometry:
    

    I couldn't find it mentioned in already opened issues, is there a plan to fix this for Python 3.10? (pandas_bokeh was installed with pip3 on a new environment)

    Regards Eloi

    opened by techexo 0
  • not working with python 3.9

    not working with python 3.9

    pandas bokeh is still not compatible with python 3.9 inside conda environment, right? I am trying to install pandas bokeh via conda install -c patrikhlobil pandas-bokeh and I am getting following error:

    Found conflicts! Looking for incompatible packages.
    This can take several minutes.  Press CTRL-C to abort.
    failed                                                                                                                                       
    
    UnsatisfiableError: The following specifications were found
    to be incompatible with the existing python installation in your environment:
    
    Specifications:
    
      - pandas-bokeh -> python[version='>=3.6,<3.7.0a0|>=3.7,<3.8.0a0|>=3.8,<3.9.0a0']
    
    Your python: python=3.9
    
    If python is on the left-most side of the chain, that's the version you've asked for.
    When python appears to the right, that indicates that the thing on the left is somehow
    not available for the python version you are constrained to. Note that conda will not
    change your python version to a different minor version unless you explicitly specify
    that.
    
    opened by tosaric 4
Releases(0.5.5)
Owner
Patrik Hlobil
Patrik Hlobil
A TileDB backend for xarray.

TileDB-xarray This library provides a backend engine to xarray using the TileDB Storage Engine. Example usage: import xarray as xr dataset = xr.open_d

TileDB, Inc. 14 Jun 02, 2021
Plot and save the ground truth and predicted results of human 3.6 M and CMU mocap dataset.

Visualization-of-Human3.6M-Dataset Plot and save the ground truth and predicted results of human 3.6 M and CMU mocap dataset. human-motion-prediction

Gaurav Kumar Yadav 5 Nov 18, 2022
Uniform Manifold Approximation and Projection

UMAP Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction technique that can be used for visualisation similarly to t-SNE, bu

Leland McInnes 6k Jan 08, 2023
This is a learning tool and exploration app made using the Dash interactive Python framework developed by Plotly

Support Vector Machine (SVM) Explorer This app has been moved here. This repo is likely outdated and will not be updated. This is a learning tool and

Plotly 150 Nov 03, 2022
Numerical methods for ordinary differential equations: Euler, Improved Euler, Runge-Kutta.

Numerical methods Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary

Aleksey Korshuk 5 Apr 29, 2022
Here I plotted data for the average test scores across schools and class sizes across school districts.

HW_02 Here I plotted data for the average test scores across schools and class sizes across school districts. Average Test Score by Race This graph re

7 Oct 27, 2021
A command line tool for visualizing CSV/spreadsheet-like data

PerfPlotter Read data from CSV files using pandas and generate interactive plots using bokeh, which can then be embedded into HTML pages and served by

Gino Mempin 0 Jun 25, 2022
Visualise Ansible execution time across playbooks, tasks, and hosts.

ansible-trace Visualise where time is spent in your Ansible playbooks: what tasks, and what hosts, so you can find where to optimise and decrease play

Mark Hansen 81 Dec 15, 2022
Pyan3 - Offline call graph generator for Python 3

Pyan takes one or more Python source files, performs a (rather superficial) static analysis, and constructs a directed graph of the objects in the combined source, and how they define or use each oth

Juha Jeronen 235 Jan 02, 2023
100 Days of Code The Complete Python Pro Bootcamp for 2022

100-Day-With-Python 100 Days of Code - The Complete Python Pro Bootcamp for 2022. In this course, I spend with python language over 100 days, and I up

Rajdip Das 8 Jun 22, 2022
Jupyter notebook and datasets from the pandas Q&A video series

Python pandas Q&A video series Read about the series, and view all of the videos on one page: Easier data analysis in Python with pandas. Jupyter Note

Kevin Markham 2k Jan 05, 2023
A simple agent-based model used to teach the basics of OOP in my lectures

Pydemic A simple agent-based model of a pandemic. This is used to teach basic principles of object-oriented programming to master students. It is not

Fabien Maussion 2 Jun 08, 2022
DataVisualization - The evolution of my arduino and python journey. New level of competence achieved

DataVisualization - The evolution of my arduino and python journey. New level of competence achieved

1 Jan 03, 2022
These data visualizations were created as homework for my CS40 class. I hope you enjoy!

Data Visualizations These data visualizations were created as homework for my CS40 class. I hope you enjoy! Nobel Laureates by their Country of Birth

9 Sep 02, 2022
Create HTML profiling reports from pandas DataFrame objects

Pandas Profiling Documentation | Slack | Stack Overflow Generates profile reports from a pandas DataFrame. The pandas df.describe() function is great

10k Jan 01, 2023
Automatically Visualize any dataset, any size with a single line of code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

AutoViz Automatically Visualize any dataset, any size with a single line of code. AutoViz performs automatic visualization of any dataset with one lin

AutoViz and Auto_ViML 1k Jan 02, 2023
Fast scatter density plots for Matplotlib

About Plotting millions of points can be slow. Real slow... 😴 So why not use density maps? ⚡ The mpl-scatter-density mini-package provides functional

Thomas Robitaille 473 Dec 12, 2022
Standardized plots and visualizations in Python

Standardized plots and visualizations in Python pltviz is a Python package for standardized visualization. Routine and novel plotting approaches are f

Andrew Tavis McAllister 0 Jul 09, 2022
A minimal Python package that produces slice plots through h5m DAGMC geometry files

A minimal Python package that produces slice plots through h5m DAGMC geometry files Installation pip install dagmc_geometry_slice_plotter Python API U

Fusion Energy 4 Dec 02, 2022
OpenStats is a library built on top of streamlit that extracts data from the Github API and shows the main KPIs

Open Stats Discover and share the KPIs of your OpenSource project. OpenStats is a library built on top of streamlit that extracts data from the Github

Pere Miquel Brull 4 Apr 03, 2022