Official Pytorch implementation for AAAI2021 paper (RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning)

Related tags

Deep LearningRSPNet
Overview

RSPNet

Official Pytorch implementation for AAAI2021 paper "RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning"

[Supplementary Materials]

Getting Started

Install Dependencies

All dependencies can be installed using pip:

python -m pip install -r requirements.txt

Our experiments run on Python 3.7 and PyTorch 1.6. Other versions should work but are not tested.

Transcode Videos (Optional)

This step is optional but will increase the data loading speed dramatically.

We decode the videos on the fly while training so we don't need to split frames. This makes disk IO a lot faster but increases CPU usage. This transcode step aims at reducing CPU consumed by decoding by 1) lower video resolution. 2) add more key frames.

To perform transcode, you need to have ffmpeg installed, then run:

python utils/transcode_dataset.py PATH/TO/ORIGIN_VIDEOS PATH/TO/TRANSCODED_VIDEOS

Be warned, this will use all your CPU and will take several hours (on our Intel E5-2630 *2 workstation) to complete.

Prepare Datasets

Your are expected to prepare date for pre-training (Kinetics-400 dataset) and fine-tuning (UCF101, HMDB51 and Something-something-v2 datasets). To let the scripts find datasets on your system, the recommended way is to create symbolic links in ./data directory to the actual path. We found this solution flexible.

The expected directory hierarchy is as follow:

├── data
│   ├── hmdb51
│   │   ├── metafile
│   │   │   ├── brush_hair_test_split1.txt
│   │   │   └── ...
│   │   └── videos
│   │       ├── brush_hair
│   │       │   └── *.avi
│   │       └── ...
│   ├── UCF101
│   │   ├── ucfTrainTestlist
│   │   │   ├── classInd.txt
│   │   │   ├── testlist01.txt
│   │   │   ├── trainlist01.txt
│   │   │   └── ...
│   │   └── UCF-101
│   │       ├── ApplyEyeMakeup
│   │       │   └── *.avi
│   │       └── ...
│   ├── kinetics400
│   │   ├── train_video
│   │   │   ├── answering_questions
│   │   │   │   └── *.mp4
│   │   │   └── ...
│   │   └── val_video
│   │       └── (same as train_video)
│   ├── kinetics100
│   │   └── (same as kinetics400)
│   └── smth-smth-v2
│       ├── 20bn-something-something-v2
│       │   └── *.mp4
│       └── annotations
│           ├── something-something-v2-labels.json
│           ├── something-something-v2-test.json
│           ├── something-something-v2-train.json
│           └── something-something-v2-validation.json
└── ...

Alternatively, you can change the path in config/dataset to match your system.

Build Kinetics-100 dataset (Optional)

Some of our ablation study experiments use the Kinetics-100 dataset for pre-training. This dataset is built by extract 100 classes from Kinetics-400, which has the smallest file size on the train set.

If you have Kinetics-400 available, you can build Kinetics-100 by:

python -m utils.build_kinetics_subset

This script will create symbolic links instead of copy data. It is expected to complete in a minute.

We have included a pre-built one at data/kinetics100_links and created the symbolic link data/kinetics100 that related to it. You need to have data/kinetics400 available at runtime.

Pre-training on Pretext Tasks

Now you have set up the environment. Run the following command to pre-train your models on pretext tasks.

export CUDA_VISIBLE_DEVICES=0,1,2,3
# Architecture: C3D
python pretrain.py -e exps/pretext-c3d -c config/pretrain/c3d.jsonnet
# Architecture: ResNet-18
python pretrain.py -e exps/pretext-resnet18 -c config/pretrain/resnet18.jsonnet
# Architecture: S3D-G
python pretrain.py -e exps/pretext-s3dg -c config/pretrain/s3dg.jsonnet
# Architecture: R(2+1)D
python pretrain.py -e exps/pretext-r2plus1d -c config/pretrain/r2plus1d.jsonnet

You can use kinetics100 dataset for training by editing config/pretrain/moco-train-base.jsonnet (line 13)

Action Recognition

After pre-trained on pretext tasks, these models are fine-tuned to perform action recognition task on UCF101, HMDB51 and Something-something-v2 datasets.

export CUDA_VISIBLE_DEVICES=0,1
# Dataset: UCF101
#     Architecture: C3D [email protected]=76.71%
python finetune.py -c config/finetune/ucf101_c3d.jsonnet \
                   --mc exps/pretext-c3d/model_best.pth.tar \
                   -e exps/ucf101-c3d
#     Architecture: ResNet-18 [email protected]=74.33%
python finetune.py -c config/finetune/ucf101_resnet18.jsonnet \
                   --mc exps/pretext-resnet18/model_best.pth.tar \
                   -e exps/ucf101-resnet18
#     Architecture: S3D-G [email protected]=89.9%
python finetune.py -c config/finetune/ucf101_s3dg.jsonnet \
                   --mc exps/pretext-s3dg/model_best.pth.tar \
                   -e exps/ucf101-s3dg
#     Architecture: R(2+1)D [email protected]=81.1%
python finetune.py -c config/finetune/ucf101_r2plus1d.jsonnet \
                   --mc exps/pretext-r2plus1d/model_best.pth.tar \
                   -e exps/ucf101-r2plus1d

# Dataset: HMDB51
#     Architecture: C3D [email protected]=44.58%
python finetune.py -c config/finetune/hmdb51_c3d.jsonnet \
                   --mc exps/pretext-c3d/model_best.pth.tar \
                   -e exps/hmdb51-c3d
#     Architecture: ResNet-18 [email protected]=41.83%
python finetune.py -c config/finetune/hmdb51_resnet18.jsonnet \
                   --mc exps/pretext-resnet18/model_best.pth.tar \
                   -e exps/hmdb51-resnet18
#     Architecture: S3D-G [email protected]=59.6%
python finetune.py -c config/finetune/hmdb51_s3dg.jsonnet \
                   --mc exps/pretext-s3dg/model_best.pth.tar \
                   -e exps/hmdb51-s3dg
#     Architecture: R(2+1)D [email protected]=44.6%
python finetune.py -c config/finetune/hmdb51_r2plus1d.jsonnet \
                   --mc exps/pretext-r2plus1d/model_best.pth.tar \
                   -e exps/hmdb51-r2plus1d

# Dataset: Something-something-v2
#     Architecture: C3D [email protected]=47.76%
python finetune.py -c config/finetune/smth_smth_c3d.jsonnet \
                   --mc exps/pretext-c3d/model_best.pth.tar \
                   -e exps/smthv2-c3d
#     Architecture: ResNet-18 [email protected]=44.02%
python finetune.py -c config/finetune/smth_smth_resnet18.jsonnet \
                   --mc exps/pretext-resnet18/model_best.pth.tar \
                   -e exps/smthv2-resnet18
#     Architecture: S3D-G [email protected]=55.03%
python finetune.py -c config/finetune/smth_smth_s3dg.jsonnet \
                   --mc exps/pretext-s3dg/model_best.pth.tar \
                   -e exps/smthv2-s3dg

Results and Pre-trained Models

Architecture Pre-trained dataset Pre-training epoch Pre-trained model Acc. on UCF101 Acc. on HMDB51
S3D-G Kinetics-400 1000 Download link 93.7 64.7
S3D-G Kinetics-400 200 Download link 89.9 59.6
R(2+1)D Kinetics-400 200 Download link 81.1 44.6
ResNet-18 Kinetics-400 200 Download link 74.3 41.8
C3D Kinetics-400 200 Download link 76.7 44.6

Video Retrieval

The pretrained model can also be used in searching relevant videos based on the given query video.

export CUDA_VISIBLE_DEVICES=0 # use single GPU 
python retrieval.py -c config/retrieval/ucf101_resnet18.jsonnet \
                    --mc exps/pretext-resnet18/model_best.pth.tar \
                    -e exps/retrieval-resnet18    

The video retrieval result in our paper

Architecture k=1 k=5 k=10 k=20 k=50
C3D 36.0 56.7 66.5 76.3 87.7
ResNet-18 41.1 59.4 68.4 77.8 88.7

Visualization

We further visualize the region of interest (RoI) that contributes most to the similarity score using the class activation map (CAM) technique.

export CUDA_VISIBLE_DEVICES=0,1
python visualization.py -c config/pretrain/s3dg.jsonnet \
                        --load-model exps/pretext-s3dg/model_best.pth.tar \
                        -e exps/visual-s3dg \
                        -x '{batch_size: 1}'

The cam visualization results will be plotted in png files like

Troubleshoot

  • DECORDError cannot find video stream with wanted index: -1

    Some video from Kinetics dataset does not contain a valid video stream for some unknown reason. To filter them out, run python utils/verify_video.py PATH/TO/VIDEOS, then copy the output to the blacklist config in config/dataset/kinetics{400,100}.libsonnet. You need to have ffmpeg installed.

Citation

Please cite the following paper if you feel RSPNet useful to your research

@InProceedings{chen2020RSPNet,
author = {Peihao Chen, Deng Huang, Dongliang He, Xiang Long, Runhao Zeng, Shilei Wen, Mingkui Tan, and Chuang Gan},
title = {RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning},
booktitle = {The AAAI Conference on Artificial Intelligence (AAAI)},
year = {2021}
}

Contact

For any question, please file an issue or contact

Peihao Chen: [email protected]
Deng Huang: [email protected]
Comments
  • r(2+1) d -18 pretrained model not fully reproducible

    r(2+1) d -18 pretrained model not fully reproducible

    Hi, I finetuned the given pre-trained r(2+1)d model on ucf-101 using the given finetuning code. It only achieves (76 -77%) accuracy. Can you confirm if the given model is the correct one. I use the same setup as mentioned in the readme.

    opened by fmthoker 3
  • framework image

    framework image

    hello, thank you for your great work. it's so smart idea!

    can you explain about framework image? i understand about RSP task, A-VID task is learned in 1 iteration. i think that it means 'anchor is same'. and i saw the algorithm, just sampling K clips in video V\v+, however, in paper fig 2. two clips in video, 1x clip and 2x clip 's features(green color) are going to g_a header and do contrastive learning. i think about you want to show us randomly selected speed.... is right? in real experiment, just c_i, c_j, {c_n}(K) clips in there? not 2K?

    thank you

    opened by youwantsy 2
  • The pre-training model of s3d-g model based on Imagenet and dynamics-400 data set?

    The pre-training model of s3d-g model based on Imagenet and dynamics-400 data set?

    Where can I download the pre training model of s3d-g model based on Imagenet and dynamics-400 dataset? Or can you upload it to this repository? 请问哪里可以下载到基于ImageNet和Kinetics-400数据集的S3D-G模型的预训练模型?或者请问作者可以上传一下公开吗?

    opened by LiangSiyv 2
  • Question about computational resources

    Question about computational resources

    Hi, Thanks for your wonderful paper and code. I want to know the computational resources of your experiments. 1. What and how many GPUs you use? 2. The training time of pretraining on K400 for 200 epochs. 3. The training time of finetuning on UCF101, HMDB51, Something-V2, respectively. Looking forward to your reply. Thanks.

    opened by wjn922 2
  • 'No configuration setting found for key force_n_crop'

    'No configuration setting found for key force_n_crop'

    I downloaded your S3D-G pre-trained model for my action recognition task on UCF101 but I keep getting this error:

    argument type: <class 'str'> Setting ulimit -n 8192 world_size=1 Using dist_url=tcp://127.0.0.1:36879 Local Rank: 0 2021-12-30 07:31:39,148|INFO |Args = Args(parser=None, config='config/finetune/ucf101_s3dg.jsonnet', ext_config=[], debug=False, experiment_dir=PosixPath('exps/ucf101-s3dg'), _run_dir=PosixPath('exps/ucf101-s3dg/run_2_20211230_073138'), load_checkpoint=None, load_model=None, validate=False, moco_checkpoint='exps/pretext-s3dg/model_best_s3dg_200epoch.pth.tar', seed=None, world_size=1, _continue=False, no_scale_lr=False) 2021-12-30 07:31:39,149|INFO |cudnn.benchmark = True 2021-12-30 07:31:39,278|INFO |Config = batch_size = 4 dataset { annotation_path = "data/UCF101/ucfTrainTestlist" fold = 1 mean = [ 0.485 0.456 0.406 ] name = "ucf101" num_classes = 101 root = "data/UCF101/UCF-101" std = [ 0.229 0.224 0.225 ] } final_validate { batch_size = 4 } log_interval = 10 method = "from-scratch" model { arch = "s3dg" } model_type = "multitask" num_epochs = 50 num_workers = 8 optimizer { dampening = 0 lr = 0.005 milestones = [ 50 100 150 ] momentum = 0.9 nesterov = false patience = 10 schedule = "cosine" weight_decay = 0.0001 } spatial_transforms { color_jitter { brightness = 0 contrast = 0 hue = 0 saturation = 0 } crop_area { max = 1 min = 0.25 } gray_scale = 0 size = 224 } temporal_transforms { frame_rate = 25 size = 64 strides = [ { stride = 1 weight = 1 } ] validate { final_n_crop = 10 n_crop = 1 stride = 1 } } validate { batch_size = 4 } 2021-12-30 07:31:39,282|INFO |Using global get_model_class({'arch': 's3dg'}) 2021-12-30 07:31:39,283|INFO |Using MultiTask Wrapper 2021-12-30 07:31:39,283|WARNING |<class 'moco.split_wrapper.MultiTaskWrapper'> using groups: 1 2021-12-30 07:31:39,383|INFO |Found fc: fc with in_features: 1024 2021-12-30 07:31:42,488|INFO |Building Dataset: VID: False, Split=train 2021-12-30 07:31:42,488|INFO |Temporal transform type: clip Traceback (most recent call last): File "finetune.py", line 502, in main() File "finetune.py", line 498, in main mp.spawn(main_worker, args=(args, dist_url,), nprocs=args.world_size) File "/home/ubuntu/anaconda3/envs/ucf101/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 200, in spawn return start_processes(fn, args, nprocs, join, daemon, start_method='spawn') File "/home/ubuntu/anaconda3/envs/ucf101/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 158, in start_processes while not context.join(): File "/home/ubuntu/anaconda3/envs/ucf101/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 119, in join raise Exception(msg) Exception:

    -- Process 0 terminated with the following error: Traceback (most recent call last): File "/home/ubuntu/anaconda3/envs/ucf101/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 20, in _wrap fn(i, *args) File "/home/ubuntu/RSPNet/finetune.py", line 452, in main_worker engine = Engine(args, cfg, local_rank=local_rank) File "/home/ubuntu/RSPNet/finetune.py", line 171, in init self.train_loader = self.data_loader_factory.build( File "/home/ubuntu/RSPNet/datasets/classification/init.py", line 81, in build temporal_transform = self.get_temporal_transform(split) File "/home/ubuntu/RSPNet/datasets/classification/init.py", line 276, in get_temporal_transform if tt_cfg.get_bool("force_n_crop"): File "/home/ubuntu/anaconda3/envs/ucf101/lib/python3.8/site-packages/pyhocon/config_tree.py", line 310, in get_bool string_value = self.get_string(key, default) File "/home/ubuntu/anaconda3/envs/ucf101/lib/python3.8/site-packages/pyhocon/config_tree.py", line 221, in get_string value = self.get(key, default) File "/home/ubuntu/anaconda3/envs/ucf101/lib/python3.8/site-packages/pyhocon/config_tree.py", line 209, in get return self._get(ConfigTree.parse_key(key), 0, default) File "/home/ubuntu/anaconda3/envs/ucf101/lib/python3.8/site-packages/pyhocon/config_tree.py", line 151, in _get raise ConfigMissingException(u"No configuration setting found for key {key}".format(key='.'.join(key_path[:key_index + 1]))) pyhocon.exceptions.ConfigMissingException: 'No configuration setting found for key force_n_crop'

    opened by aloma85 0
Releases(pretrained_model)
PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection.

Introduction This repo contains the official PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection. Up

133 Dec 29, 2022
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

MOSES 656 Dec 29, 2022
TipToiDog - Tip Toi Dog With Python

TipToiDog Was ist dieses Projekt? Meine 5-jährige Tochter spielt sehr gerne das

1 Feb 07, 2022
Torchserve server using a YoloV5 model running on docker with GPU and static batch inference to perform production ready inference.

Yolov5 running on TorchServe (GPU compatible) ! This is a dockerfile to run TorchServe for Yolo v5 object detection model. (TorchServe (PyTorch librar

82 Nov 29, 2022
Block-wisely Supervised Neural Architecture Search with Knowledge Distillation (CVPR 2020)

DNA This repository provides the code of our paper: Blockwisely Supervised Neural Architecture Search with Knowledge Distillation. Illustration of DNA

Changlin Li 215 Dec 19, 2022
Global Filter Networks for Image Classification

Global Filter Networks for Image Classification Created by Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, Jie Zhou This repository contains PyTorch

Yongming Rao 273 Dec 26, 2022
Creative Applications of Deep Learning w/ Tensorflow

Creative Applications of Deep Learning w/ Tensorflow This repository contains lecture transcripts and homework assignments as Jupyter Notebooks for th

Parag K Mital 1.5k Dec 30, 2022
A scanpy extension to analyse single-cell TCR and BCR data.

Scirpy: A Scanpy extension for analyzing single-cell immune-cell receptor sequencing data Scirpy is a scalable python-toolkit to analyse T cell recept

ICBI 145 Jan 03, 2023
Code for our paper "Multi-scale Guided Attention for Medical Image Segmentation"

Medical Image Segmentation with Guided Attention This repository contains the code of our paper: "'Multi-scale self-guided attention for medical image

Ashish Sinha 394 Dec 28, 2022
Official code for "EagerMOT: 3D Multi-Object Tracking via Sensor Fusion" [ICRA 2021]

EagerMOT: 3D Multi-Object Tracking via Sensor Fusion Read our ICRA 2021 paper here. Check out the 3 minute video for the quick intro or the full prese

Aleksandr Kim 276 Dec 30, 2022
The official implementation of Theme Transformer

Theme Transformer This is the official implementation of Theme Transformer. Checkout our demo and paper : Demo | arXiv Environment: using python versi

Ian Shih 85 Dec 08, 2022
Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021

Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021 Abstract Recent works have made great success in semantic segmentation by explo

Hanzhe Hu 30 Dec 29, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.

TFlite Ultra Fast Lane Detection Inference Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite. So

Ibai Gorordo 12 Aug 27, 2022
This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras)

Yogi-Optimizer_Keras This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras) The NeurIPS-Paper can be found here: http://papers.nips.c

14 Sep 13, 2022
mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms.

mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms. It provides easily interchangeable modeling and planning components, and a set of utility function

Facebook Research 724 Jan 04, 2023
Hierarchical Metadata-Aware Document Categorization under Weak Supervision (WSDM'21)

Hierarchical Metadata-Aware Document Categorization under Weak Supervision This project provides a weakly supervised framework for hierarchical metada

Yu Zhang 53 Sep 17, 2022
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

GFNet-Pytorch (NeurIPS 2020) This repo contains the official code and pre-trained models for the glance and focus network (GFNet). Glance and Focus: a

Rainforest Wang 169 Oct 28, 2022
Code for "Single-view robot pose and joint angle estimation via render & compare", CVPR 2021 (Oral).

Single-view robot pose and joint angle estimation via render & compare Yann Labbé, Justin Carpentier, Mathieu Aubry, Josef Sivic CVPR: Conference on C

Yann Labbé 51 Oct 14, 2022
PyTorch implementation of SwAV (Swapping Assignments between Views)

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments This code provides a PyTorch implementation and pretrained models for SwAV

Meta Research 1.7k Jan 04, 2023