PyTorch evaluation code for Delving Deep into the Generalization of Vision Transformers under Distribution Shifts.

Overview

Out-of-distribution Generalization Investigation on Vision Transformers

This repository contains PyTorch evaluation code for Delving Deep into the Generalization of Vision Transformers under Distribution Shifts.

A Quick Glance of Our Work

A quick glance of our investigation observations. left: Investigation of IID/OOD Generalization Gap implies that ViTs generalize better than CNNs under most types of distribution shifts. right: Combined with generalization-enhancing methods, we achieve significant performance boosts on the OOD data by 4% compared with vanilla ViTs, and consistently outperform the corresponding CNN models. The enhanced ViTs also have smaller IID/OOD Generalization Gap than the ehhanced BiT models.

Taxonomy of Distribution Shifts

Illustration of our taxonomy of distribution shifts. We build the taxonomy upon what kinds of semantic concepts are modified from the original image. We divide the distribution shifts into five cases: background shifts, corruption shifts, texture shifts, destruction shifts, and style shifts. We apply the proxy -distance (PAD) as an empirical measurement of distribution shifts. We select a representative sample of each distribution shift type and rank them by their PAD values (illustrated nearby the stars), respectively. Please refer to the literature for details.

Datasets Used for Investigation

  • Background Shifts. ImageNet-9 is adopted for background shifts. ImageNet-9 is a variety of 9-class datasets with different foreground-background recombination plans, which helps disentangle the impacts of foreground and background signals on classification. In our case, we use the four varieties of generated background with foreground unchanged, including 'Only-FG', 'Mixed-Same', 'Mixed-Rand' and 'Mixed-Next'. The 'Original' data set is used to represent in-distribution data.
  • Corruption Shifts. ImageNet-C is used to examine generalization ability under corruption shifts. ImageNet-C includes 15 types of algorithmically generated corruptions, grouped into 4 categories: ‘noise’, ‘blur’, ‘weather’, and ‘digital’. Each corruption type has five levels of severity, resulting in 75 distinct corruptions.
  • Texture Shifts. Cue Conflict Stimuli and Stylized-ImageNet are used to investigate generalization under texture shifts. Utilizing style transfer, Geirhos et al. generated Cue Conflict Stimuli benchmark with conflicting shape and texture information, that is, the image texture is replaced by another class with other object semantics preserved. In this case, we respectively report the shape and texture accuracy of classifiers for analysis. Meanwhile, Stylized-ImageNet is also produced in Geirhos et al. by replacing textures with the style of randomly selected paintings through AdaIN style transfer.
  • Destruction Shifts. Random patch-shuffling is utilized for destruction shifts to destruct images into random patches. This process can destroy long-range object information and the severity increases as the split numbers grow. In addition, we make a variant by further divide each patch into two right triangles and respectively shuffle two types of triangles. We name the process triangular patch-shuffling.
  • Style Shifts. ImageNet-R and DomainNet are used for the case of style shifts. ImageNet-R contains 30000 images with various artistic renditions of 200 classes of the original ImageNet validation data set. The renditions in ImageNet-R are real-world, naturally occurring variations, such as paintings or embroidery, with textures and local image statistics which differ from those of ImageNet images. DomainNet is a recent benchmark dataset for large-scale domain adaptation that consists of 345 classes and 6 domains. As labels of some domains are very noisy, we follow the 7 distribution shift scenarios in Saito et al. with 4 domains (Real, Clipart, Painting, Sketch) picked.

Generalization-Enhanced Vision Transformers

A framework overview of the three designed generalization-enhanced ViTs. All networks use a Vision Transformer as feature encoder and a label prediction head . Under this setting, the inputs to the models have labeled source examples and unlabeled target examples. top left: T-ADV promotes the network to learn domain-invariant representations by introducing a domain classifier for domain adversarial training. top right: T-MME leverage the minimax process on the conditional entropy of target data to reduce the distribution gap while learning discriminative features for the task. The network uses a cosine similarity-based classifier architecture to produce class prototypes. bottom: T-SSL is an end-to-end prototype-based self-supervised learning framework. The architecture uses two memory banks and to calculate cluster centroids. A cosine classifier is used for classification in this framework.

Run Our Code

Environment Installation

conda create -n vit python=3.6
conda activate vit
conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.0 -c pytorch

Before Running

conda activate vit
PYTHONPATH=$PYTHONPATH:.

Evaluation

CUDA_VISIBLE_DEVICES=0 python main.py \
--model deit_small_b16_384 \
--num-classes 345 \
--checkpoint data/checkpoints/deit_small_b16_384_baseline_real.pth.tar \
--meta-file data/metas/DomainNet/sketch_test.jsonl \
--root-dir data/images/DomainNet/sketch/test

Experimental Results

DomainNet

DeiT_small_b16_384

confusion matrix for the baseline model

clipart painting real sketch
clipart 80.25 33.75 55.26 43.43
painting 36.89 75.32 52.08 31.14
real 50.59 45.81 84.78 39.31
sketch 52.16 35.27 48.19 71.92

Above used models could be found here.

Remarks

  • These results may slightly differ from those in our paper due to differences of the environments.

  • We will continuously update this repo.

Citation

If you find these investigations useful in your research, please consider citing:

@misc{zhang2021delving,  
      title={Delving Deep into the Generalization of Vision Transformers under Distribution Shifts}, 
      author={Chongzhi Zhang and Mingyuan Zhang and Shanghang Zhang and Daisheng Jin and Qiang Zhou and Zhongang Cai and Haiyu Zhao and Shuai Yi and Xianglong Liu and Ziwei Liu},  
      year={2021},  
      eprint={2106.07617},  
      archivePrefix={arXiv},  
      primaryClass={cs.CV}  
}
Owner
Chongzhi Zhang
I am a Master Degree Candidate student, from Beihang University.
Chongzhi Zhang
PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

pytorch-fcn PyTorch implementation of Fully Convolutional Networks. Requirements pytorch = 0.2.0 torchvision = 0.1.8 fcn = 6.1.5 Pillow scipy tqdm

Kentaro Wada 1.6k Jan 07, 2023
WRENCH: Weak supeRvision bENCHmark

🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022
[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding Official Pytorch implementation of Negative Sample Matter

Multimedia Computing Group, Nanjing University 69 Dec 26, 2022
Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19 (Oral).

Pose-Transfer Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19(Oral). The paper is available here. Video generation

Tengteng Huang 679 Jan 04, 2023
This project is the PyTorch implementation of our CVPR 2022 paper:

Requirements and Dependency Install PyTorch with CUDA (for GPU). (Experiments are validated on python 3.8.11 and pytorch 1.7.0) (For visualization if

Lei Huang 23 Nov 29, 2022
Development Kit for the SoccerNet Challenge

SoccerNetv2-DevKit Welcome to the SoccerNet-V2 Development Kit for the SoccerNet Benchmark and Challenge. This kit is meant as a help to get started w

Silvio Giancola 117 Dec 30, 2022
The final project of "Applying AI to 2D Medical Imaging Data" of "AI for Healthcare" nanodegree - Udacity.

Pneumonia Detection from X-Rays Project Overview In this project, you will apply the skills that you have acquired in this 2D medical imaging course t

Omar Laham 1 Jan 14, 2022
Implementation for Curriculum DeepSDF

Curriculum-DeepSDF This repository is an implementation for Curriculum DeepSDF. Full paper is available here. Preparation Please follow original setti

Haidong Zhu 69 Dec 29, 2022
Official repo for AutoInt: Automatic Integration for Fast Neural Volume Rendering in CVPR 2021

AutoInt: Automatic Integration for Fast Neural Volume Rendering CVPR 2021 Project Page | Video | Paper PyTorch implementation of automatic integration

Stanford Computational Imaging Lab 149 Dec 22, 2022
A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

Jun-Yan Zhu 27 Aug 08, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing"

A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing" (WebConf 2021). Abstract In this work we propose Pathfind

Benedek Rozemberczki 49 Dec 01, 2022
Style transfer between images was performed using the VGG19 model

Style transfer between images was performed using the VGG19 model. The necessary codes, libraries and all other information of this project are available below

Onur yılmaz 2 May 09, 2022
Exploring whether attention is necessary for vision transformers

Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet Paper/Report TL;DR We replace the attention layer in a v

Luke Melas-Kyriazi 461 Jan 07, 2023
Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)

scikit-opt Swarm Intelligence in Python (Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Algorithm, Immune Algorithm,A

郭飞 3.7k Jan 03, 2023
a minimal terminal with python 😎😉

Meterm a terminal with python 😎 How to use Clone Project: $ git clone https://github.com/motahharm/meterm.git Run: in Terminal: meterm.exe Or pip ins

Motahhar.Mokfi 5 Jan 28, 2022
This repository contains the code used for the implementation of the paper "Probabilistic Regression with HuberDistributions"

Public_prob_regression_with_huber_distributions This repository contains the code used for the implementation of the paper "Probabilistic Regression w

David Mohlin 1 Dec 04, 2021
SoK: Vehicle Orientation Representations for Deep Rotation Estimation

SoK: Vehicle Orientation Representations for Deep Rotation Estimation Raymond H. Tu, Siyuan Peng, Valdimir Leung, Richard Gao, Jerry Lan This is the o

FIRE Capital One Machine Learning of the University of Maryland 12 Oct 07, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022)

Pop-Out Motion Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022) Jihyun Lee*, Minhyuk Sung*, Hyunjin Kim, Tae-Ky

Jihyun Lee 88 Nov 22, 2022