NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM

Overview

NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM

Automatic Evaluation Metric described in the papers BaryScore (EMNLP 2021) , DepthScore (Submitted), InfoLM (AAAI 2022).

Authors:

Goal :

This repository deals with automatic evaluation of NLG and addresses the special case of reference based evaluation. The goal is to build a metric m: where is the space of sentences. An example is given below:

Metric examples: similar sentences should have a high score, dissimilar should have a low score according to m.

Overview

We start by giving an overview of the proposed metrics.

DepthScore (Submitted)

DepthScore is a single layer metric based on pretrained contextualized representations. Similar to BertScore, it embeds both the candidate (C: It is freezing this morning) and the reference (R: The weather is cold today) using a single layer of Bert to obtain discrete probability measures and . Then, a similarity score is computed using the pseudo metric introduced here.

Depth Score

This statistical measure has been tested on Data2text and Summarization.

BaryScore (EMNLP 2021)

BaryScore is a multi-layers metric based on pretrained contextualized representations. Similar to MoverScore, it aggregates the layers of Bert before computing a similarity score. By modelling the layer output of deep contextualized embeddings as a probability distribution rather than by a vector embedding; BaryScore aggregates the different outputs through the Wasserstein space topology. MoverScore (right) leverages the information available in other layers by aggregating the layers using a power mean and then use a Wasserstein distance ().

BaryScore (left) vs MoverScore (right)

This statistical measure has been tested on Data2text, Summarization, Image captioning and NMT.

InfoLM (AAAI 2022)

InfoLM is a metric based on a pretrained language model ( PLM) (). Given an input sentence S mask at position i (), the PLM outputs a discret probability distribution () over the vocabulary (). The second key ingredient of InfoLM is a measure of information () that computes a measure of similarity between the aggregated distributions. Formally, InfoLM involes 3 steps:

  • 1. Compute individual distributions using for the candidate C and the reference R.
  • 2. Aggregate individual distributions using a weighted sum.
  • 3. Compute similarity using .
InfoLM

InfoLM is flexible as it can adapte to different criteria using different measures of information. This metric has been tested on Data2text and Summarization.

References

If you find this repo useful, please cite our papers:

@article{infolm_aaai2022,
  title={InfoLM: A New Metric to Evaluate Summarization \& Data2Text Generation},
  author={Colombo, Pierre and Clavel, Chloe and Piantanida, Pablo},
  journal={arXiv preprint arXiv:2112.01589},
  year={2021}
}
@inproceedings{colombo-etal-2021-automatic,
    title = "Automatic Text Evaluation through the Lens of {W}asserstein Barycenters",
    author = "Colombo, Pierre  and Staerman, Guillaume  and Clavel, Chlo{\'e}  and Piantanida, Pablo",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    year = "2021",
    pages = "10450--10466"
}
@article{depth_score,
  title={A pseudo-metric between probability distributions based on depth-trimmed regions},
  author={Staerman, Guillaume and Mozharovskyi, Pavlo and Colombo, Pierre and Cl{\'e}men{\c{c}}on, St{\'e}phan and d'Alch{\'e}-Buc, Florence},
  journal={arXiv preprint arXiv:2103.12711},
  year={2021}
}

Usage

Python Function

Running our metrics can be computationally intensive (because it relies on pretrained models). Therefore, a GPU is usually necessary. If you don't have access to a GPU, you can use light pretrained representations such as TinyBERT, DistilBERT.

We provide example inputs under <metric_name>.py. For example for BaryScore

metric_call = BaryScoreMetric()

ref = [
        'I like my cakes very much',
        'I hate these cakes!']
hypothesis = ['I like my cakes very much',
                  'I like my cakes very much']

metric_call.prepare_idfs(ref, hypothesis)
final_preds = metric_call.evaluate_batch(ref, hypothesis)
print(final_preds)

Command Line Interface (CLI)

We provide a command line interface (CLI) of BERTScore as well as a python module. For the CLI, you can use it as follows:

export metric=infolm
export measure_to_use=fisher_rao
CUDA_VISIBLE_DEVICES=0 python score_cli.py --ref="samples/refs.txt" --cand="samples/hyps.txt" --metric_name=${metric} --measure_to_use=${measure_to_use}

See more options by python score_cli.py -h.

Practical Tips

  • Unlike BERT, RoBERTa uses GPT2-style tokenizer which creates addition " " tokens when there are multiple spaces appearing together. It is recommended to remove addition spaces by sent = re.sub(r' +', ' ', sent) or sent = re.sub(r'\s+', ' ', sent).
  • Using inverse document frequency (idf) on the reference sentences to weigh word importance may correlate better with human judgment. However, when the set of reference sentences become too small, the idf score would become inaccurate/invalid. To use idf, please set --idf when using the CLI tool.
  • When you are low on GPU memory, consider setting batch_size to a low number.

Practical Limitation

  • Because pretrained representations have learned positional embeddings with max length 512, our scores are undefined between sentences longer than 510 (512 after adding [CLS] and [SEP] tokens) . The sentences longer than this will be truncated. Please consider using larger models which can support much longer inputs.

Acknowledgements

Our research was granted access to the HPC resources of IDRIS under the allocation 2021-AP010611665 as well as under the project 2021-101838 made by GENCI.

Owner
Pierre Colombo
Pierre Colombo
A project which aims to protect your privacy using inexpensive hardware and easily modifiable software

Protecting your privacy using an ESP32, an IR sensor and a python script This project, which I personally call the "never-gonna-catch-me-in-the-act-ev

8 Oct 10, 2022
SigOpt wrappers for scikit-learn methods

SigOpt + scikit-learn Interfacing This package implements useful interfaces and wrappers for using SigOpt and scikit-learn together Getting Started In

SigOpt 73 Sep 30, 2022
Source code for our paper "Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures"

Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures Code for the Multiplex Molecular Graph Neural Network (M

shzhang 59 Dec 10, 2022
code for "Self-supervised edge features for improved Graph Neural Network training",

Self-supervised edge features for improved Graph Neural Network training Data availability: Here is a link to the raw data for the organoids dataset.

Neal Ravindra 23 Dec 02, 2022
Minimal But Practical Image Classifier Pipline Using Pytorch, Finetune on ResNet18, Got 99% Accuracy on Own Small Datasets.

PyTorch Image Classifier Updates As for many users request, I released a new version of standared pytorch immage classification example at here: http:

JinTian 106 Nov 06, 2022
Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

This is the code associated with the paper Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks, published at CVPR 2020.

Thomas Roddick 219 Dec 20, 2022
Easy and comprehensive assessment of predictive power, with support for neuroimaging features

Documentation: https://raamana.github.io/neuropredict/ News As of v0.6, neuropredict now supports regression applications i.e. predicting continuous t

Pradeep Reddy Raamana 93 Nov 29, 2022
Optimize Trading Strategies Using Freqtrade

Optimize trading strategy using Freqtrade Short demo on building, testing and optimizing a trading strategy using Freqtrade. The DevBootstrap YouTube

DevBootstrap 139 Jan 01, 2023
Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)

The Official Implementation of CLIB (Continual Learning for i-Blurry) Online Continual Learning on Class Incremental Blurry Task Configuration with An

NAVER AI 34 Oct 26, 2022
This is an open solution to the Home Credit Default Risk challenge 🏡

Home Credit Default Risk: Open Solution This is an open solution to the Home Credit Default Risk challenge 🏡 . More competitions 🎇 Check collection

minerva.ml 427 Dec 27, 2022
KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

86 Dec 12, 2022
[SIGGRAPH Asia 2021] DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning.

DeepVecFont This is the homepage for "DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning". Yizhi Wang and Zhouhui Lian. WI

Yizhi Wang 17 Dec 22, 2022
LBK 35 Dec 26, 2022
Lama-cleaner: Image inpainting tool powered by LaMa

Lama-cleaner: Image inpainting tool powered by LaMa

Qing 5.8k Jan 05, 2023
DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs

DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs Abstract: Image-to-image translation has recently achieved re

yaxingwang 23 Apr 14, 2022
Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

1.1k Jan 03, 2023
🐦 Opytimizer is a Python library consisting of meta-heuristic optimization techniques.

Opytimizer: A Nature-Inspired Python Optimizer Welcome to Opytimizer. Did you ever reach a bottleneck in your computational experiments? Are you tired

Gustavo Rosa 546 Dec 31, 2022
Changing the Mind of Transformers for Topically-Controllable Language Generation

We will first introduce the how to run the IPython notebook demo by downloading our pretrained models. Then, we will introduce how to run our training and evaluation code.

IESL 20 Dec 06, 2022
Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Video Object Segmentation.

Training Script for Reuse-VOS This code implementation of CVPR 2021 paper : Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Vi

HYOJINPARK 22 Jan 01, 2023
CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped

CSWin-Transformer This repo is the official implementation of "CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows". Th

Microsoft 409 Jan 06, 2023