public repo for ESTER dataset and modeling (EMNLP'21)

Related tags

Deep LearningESTER
Overview

Project / Paper Introduction

This is the project repo for our EMNLP'21 paper: https://arxiv.org/abs/2104.08350

Here, we provide brief descriptions of the final data and detailed instructions to reproduce results in our paper. For more details, please refer to the paper.

Data

Final data used for the experiments are saved in ./data/ folder with train/dev/test splits. Most data fields are straightforward. Just a few notes,

  • question_event: this field is not provided by annotators nor used for our experiments. We simply use some heuristic rules based on POS tags to extract possible events in the questions. Users are encourages to try alternative tools such semantic role labeling.
  • original_events and indices are the annotator-provided event triggers plus their indices in the context.
  • answer_texts and answer_indices (in train and dev) are the annotator-provided answers plus their indices in the context.

Please Note: the evaluation script below (II) only works for the dev set. Please refer to Section III for submission to our leaderboard: https://eventqa.github.io

Models

I. Install packages.

We list the packages in our environment in env.yml file for your reference. Below are a few key packages.

  • python=3.8.5
  • pytorch=1.6.0
  • transformers=3.1.0
  • cudatoolkit=10.1.243
  • apex=0.1

To install apex, you can either follow official instruction: https://github.com/NVIDIA/apex or conda: https://anaconda.org/conda-forge/nvidia-apex

II. Replicate results in our paper.

1. Download trained models.

For reproduction purpose, we release all trained models.

  • Download link: https://drive.google.com/drive/folders/1bTCb4gBUCaNrw2chleD4RD9JP1_DOWjj?usp=sharing.
  • We only provide models with the best "hyper-parameters", and each comes with three random seeds: 5, 7, 23.
  • Make several directories to save models ./output/, ./output/facebook/ and ./output/allenai/.
  • For BART models, download them into ./output/facebook/.
  • For UnifiedQA models, download them into ./output/allenai/.
  • All other models can be saved in ./output/ directly. These ensure evaluation scripts run properly below.

2. Zero-shot performances in Table 3.

Run bash ./code/eval_zero_shot.sh. Model options are provided in the script.

3. Generative QA Fine-tuning performances in Table 3.

Run bash ./code/eval_ans_gen.sh. Make sure the following arguments are set correctly in the script.

  • Model Options provided in the script
  • Set suffix=""
  • Set lrs and batch according to model options. You can find these numbers in Appendix G of the paper.

4. Figure 6: UnifiedQA-large model trained with sub-samples.

Run bash ./code/eval_ans_gen.sh`. Make sure the following arguments are set correctly in the script.

  • model="allenai/unifiedqa-t5-large"
  • suffix={"_500" | "_1000" | "_2000" | "_3000" | "_4000"}
  • Set lrs and batch accordingly. You can find these information in the folder name containing the trained model objects.

5. Table 4: 500 original annotations v.s. completed

  • bash ./code/eval_ans_gen.sh with model="allenai/unifiedqa-t5-large and suffix="_500original
  • bash ./code/eval_ans_gen.sh with model="allenai/unifiedqa-t5-large and suffix="_500completed
  • Set lrs and batch accordingly again.

6. Extractive QA Fine-tuning performances in Table 3.

Simply run bash ./code/eval_span_pred.sh as it is.

7. Figure 8: Extractive QA Fine-tuning performances by changing positive weights.

  • Run bash ./code/eval_span_pred.sh.
  • Set pw, lrs and batch according to model folder names again.

III. Submission to ESTER Leaderboard

  • Set model_dir to your target models
  • Run leaderboard.sh, which outputs pred_dev.json and pred_test.json under ./output
  • If you write your own code to output predictions, make sure they follow our original sample order.
  • Email pred_test.json to us following in the format specified here: https://eventqa.github.io Sample outputs (using one of our UnifiedQA-large models) are provided under ./output

IV. Model Training

We also provide the model training scripts below.

1. Generative QA: Fine-tuning in Table 3.

  • Run bash ./code/run_ans_generation.sh.
  • Model options and hyper-parameter search range are provided in the script.
  • We use --fp16 argument to activate apex for GPU memory efficient training except for UnifiedQA-t5-large (trained on A100 GPU).

2. Figure 6: UnifiedQA-large model trained with sub-samples.

  • Run bash ./code/run_ans_gen_subsample.sh.
  • Set sample_size variable accordingly in the script.

3. Table 4: 500 original annotations v.s. completed

  • Run bash ./code/run_ans_gen.sh with model="allenai/unifiedqa-t5-large and suffix="_500original
  • Run bash ./code/run_ans_gen.sh with model="allenai/unifiedqa-t5-large and suffix="_500completed

4. Extractive QA Fine-tuning in Table 3 + Figure 8

Simply run bash ./code/run_span_pred.sh as it is.

Owner
PlusLab
Peng's Language Understanding & Synthesis Lab at UCLA and USC
PlusLab
Neural Tangent Generalization Attacks (NTGA)

Neural Tangent Generalization Attacks (NTGA) ICML 2021 Video | Paper | Quickstart | Results | Unlearnable Datasets | Competitions | Citation Overview

Chia-Hung Yuan 34 Nov 25, 2022
Code for ECCV 2020 paper "Contacts and Human Dynamics from Monocular Video".

Contact and Human Dynamics from Monocular Video This is the official implementation for the ECCV 2020 spotlight paper by Davis Rempe, Leonidas J. Guib

Davis Rempe 207 Jan 05, 2023
A keras-based real-time model for medical image segmentation (CFPNet-M)

CFPNet-M: A Light-Weight Encoder-Decoder Based Network for Multimodal Biomedical Image Real-Time Segmentation This repository contains the implementat

268 Nov 27, 2022
Auto HMM: Automatic Discrete and Continous HMM including Model selection

Auto HMM: Automatic Discrete and Continous HMM including Model selection

Chess_champion 29 Dec 07, 2022
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Pyjcsx 328 Dec 17, 2022
Differentiable Quantum Chemistry (only Differentiable Density Functional Theory and Hartree Fock at the moment)

DQC: Differentiable Quantum Chemistry Differentiable quantum chemistry package. Currently only support differentiable density functional theory (DFT)

75 Dec 02, 2022
Meta-learning for NLP

Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks Code for training the meta-learning models and fine-tuning on downstr

IESL 43 Nov 08, 2022
Event sourced bank - A wide-and-shallow example using the Python event sourcing library

Event Sourced Bank A "wide but shallow" example of using the Python event sourci

3 Mar 09, 2022
CVNets: A library for training computer vision networks

CVNets: A library for training computer vision networks This repository contains the source code for training computer vision models. Specifically, it

Apple 1.1k Jan 03, 2023
Train CPPNs as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images.

cppn-gan-vae tensorflow Train Compositional Pattern Producing Network as a Generative Model, using Generative Adversarial Networks and Variational Aut

hardmaru 343 Dec 29, 2022
Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Phil Wang 383 Jan 02, 2023
A learning-based data collection tool for human segmentation

FullBodyFilter A Learning-Based Data Collection Tool For Human Segmentation Contents Documentation Source Code and Scripts Overview of Project Usage O

Robert Jiang 4 Jun 24, 2022
Synthetic LiDAR sequential point cloud dataset with point-wise annotations

SynLiDAR dataset: Learning From Synthetic LiDAR Sequential Point Cloud This is official repository of the SynLiDAR dataset. For technical details, ple

78 Dec 27, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Dec 29, 2022
CCP dataset from Clothing Co-Parsing by Joint Image Segmentation and Labeling

Clothing Co-Parsing (CCP) Dataset Clothing Co-Parsing (CCP) dataset is a new clothing database including elaborately annotated clothing items. 2, 098

Wei Yang 434 Dec 24, 2022
Implementation of TabTransformer, attention network for tabular data, in Pytorch

Tab Transformer Implementation of Tab Transformer, attention network for tabular data, in Pytorch. This simple architecture came within a hair's bread

Phil Wang 420 Jan 05, 2023
Source Code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chinese Question Matching

Description The source code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chin

Zhengxiang Wang 3 Jun 28, 2022
Object Depth via Motion and Detection Dataset

ODMD Dataset ODMD is the first dataset for learning Object Depth via Motion and Detection. ODMD training data are configurable and extensible, with ea

Brent Griffin 172 Dec 21, 2022
Official Repository for the paper "Improving Baselines in the Wild".

iWildCam and FMoW baselines (WILDS) This repository was originally forked from the official repository of WILDS datasets (commit 7e103ed) For general

Kazuki Irie 3 Nov 24, 2022
ONNX Runtime: cross-platform, high performance ML inferencing and training accelerator

ONNX Runtime is a cross-platform inference and training machine-learning accelerator. ONNX Runtime inference can enable faster customer experiences an

Microsoft 8k Jan 04, 2023