One Million Scenes for Autonomous Driving

Overview

ONCE Benchmark

This is a reproduced benchmark for 3D object detection on the ONCE (One Million Scenes) dataset.

The code is mainly based on OpenPCDet.

Introduction

We provide the dataset API and some reproduced models on the ONCE dataset.

Installation

The repo is based on OpenPCDet. If you have already installed OpenPCDet (version >= v0.3.0), you can skip this part and use the existing environment, but remember to re-compile CUDA operators by

python setup.py develop
cd pcdet/ops/dcn
python setup.py develop

If you haven't installed OpenPCDet, please refer to INSTALL.md for the installation.

Getting Started

Please refer to GETTING_STARTED.md to learn more usage about this project.

Benchmark

Please refer to this page for detailed benchmark results. We cannot release the training checkpoints, but it's easy to reproduce the results with provided configurations.

Detection Models

We provide 1 fusion-based and 5 point cloud based 3D detectors. The training configurations are at tools/cfgs/once_models/sup_models/*.yaml

For PointPainting, you have to first produce segmentation results yourself. We used HRNet trained on CityScapes to generate segmentation masks.

Reproduced results on the validation split (trained on the training split):

Method Vehicle Pedestrian Cyclist mAP
PointRCNN 52.09 4.28 29.84 28.74
PointPillars 68.57 17.63 46.81 44.34
SECOND 71.19 26.44 58.04 51.89
PV-RCNN 77.77 23.50 59.37 53.55
CenterPoints 66.79 49.90 63.45 60.05
PointPainting 66.17 44.84 62.34 57.78

Semi-supervised Learning

We provide 5 semi-supervised methods based on the SECOND detector. The training configurations are at tools/cfgs/once_models/semi_learning_models/*.yaml

It is worth noting that all the methods are implemented by ourselves, and some are modified to attain better performance. Thus our implementations may be quite different from the original versions.

Reproduced results on the validation split (semi-supervised learning on the 100k raw_small subset):

Method Vehicle Pedestrian Cyclist mAP
baseline (SECOND) 71.19 26.44 58.04 51.89
Pseudo Label 72.80 25.50 55.37 51.22
Noisy Student 73.69 28.81 54.67 52.39
Mean Teacher 74.46 30.54 61.02 55.34
SESS 73.33 27.31 59.52 53.39
3DIoUMatch 73.81 30.86 56.77 53.81

Unsupervised Domain Adaptation

This part of the codes is based on ST3D. Please copy the configurations at tools/cfgs/once_models/uda_models/* and tools/cfgs/dataset_configs/da_once_dataset.yaml, as well as the dataset file pcdet/datasets/once/once_target_dataset.py to the ST3D repo. The results can be easily reproduced following their instructions.

Task Waymo_to_ONCE nuScenes_to_ONCE ONCE_to_KITTI
Method AP_BEV/AP_3D AP_BEV/AP_3D AP_BEV/AP_3D
Source Only 65.55/32.88 46.85/23.74 42.01/12.11
SN 67.97/38.25 62.47/29.53 48.12/21.12
ST3D 68.05/48.34 42.53/17.52 86.89/41.42
Oracle 89.00/77.50 89.00/77.50 83.29/73.45

Citation

If you find this project useful in your research, please consider cite:

@article{mao2021one,
  title={One Million Scenes for Autonomous Driving: ONCE Dataset},
  author={Mao, Jiageng and Niu, Minzhe and Jiang, Chenhan and Liang, Hanxue and Liang, Xiaodan and Li, Yamin and Ye, Chaoqiang and Zhang, Wei and Li, Zhenguo and Yu, Jie and others},
  journal={arXiv preprint arXiv:2106.11037},
  year={2021}
}
This is the official PyTorch implementation of the CVPR 2020 paper "TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting".

TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting Project Page | YouTube | Paper This is the official PyTorch implementation of the C

Zhuoqian Yang 330 Dec 11, 2022
Paddle implementation for "Highly Efficient Knowledge Graph Embedding Learning with Closed-Form Orthogonal Procrustes Analysis" (NAACL 2021)

ProcrustEs-KGE Paddle implementation for Highly Efficient Knowledge Graph Embedding Learning with Orthogonal Procrustes Analysis 🙈 A more detailed re

Lincedo Lab 4 Jun 09, 2021
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

342 Dec 02, 2022
A framework for joint super-resolution and image synthesis, without requiring real training data

SynthSR This repository contains code to train a Convolutional Neural Network (CNN) for Super-resolution (SR), or joint SR and data synthesis. The met

83 Jan 01, 2023
This application explain how we can easily integrate Deepface framework with Python Django application

deepface_suite This application explain how we can easily integrate Deepface framework with Python Django application install redis cache install requ

Mohamed Naji Aboo 3 Apr 18, 2022
A curated list and survey of awesome Vision Transformers.

English | 简体中文 A curated list and survey of awesome Vision Transformers. You can use mind mapping software to open the mind mapping source file. You c

OpenMMLab 281 Dec 21, 2022
Collect super-resolution related papers, data, repositories

Collect super-resolution related papers, data, repositories

WangChaofeng 1.7k Jan 03, 2023
One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing".

Introduction One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing". Users

seq-to-mind 18 Dec 11, 2022
Implementation of "A MLP-like Architecture for Dense Prediction"

A MLP-like Architecture for Dense Prediction (arXiv) Updates (22/07/2021) Initial release. Model Zoo We provide CycleMLP models pretrained on ImageNet

Shoufa Chen 244 Dec 27, 2022
Array Camera Ptychography

Array Camera Ptychography This repository provides the code for the following papers: Schulz, Timothy J., David J. Brady, and Chengyu Wang. "Photon-li

Brady lab in Optical Sciences 1 Nov 15, 2021
MT-GAN-PyTorch - PyTorch Implementation of Learning to Transfer: Unsupervised Domain Translation via Meta-Learning

MT-GAN-PyTorch PyTorch Implementation of AAAI-2020 Paper "Learning to Transfer: Unsupervised Domain Translation via Meta-Learning" Dependency: Python

29 Oct 19, 2022
This code provides a PyTorch implementation for OTTER (Optimal Transport distillation for Efficient zero-shot Recognition), as described in the paper.

Data Efficient Language-Supervised Zero-Shot Recognition with Optimal Transport Distillation This repository contains PyTorch evaluation code, trainin

Meta Research 45 Dec 20, 2022
Adversarial Self-Defense for Cycle-Consistent GANs

Adversarial Self-Defense for Cycle-Consistent GANs This is the official implementation of the CycleGAN robust to self-adversarial attacks used in pape

Dina Bashkirova 10 Oct 10, 2022
PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentation.

Shape-aware Convolutional Layer (ShapeConv) PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentatio

Hanchao Leng 82 Dec 29, 2022
Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it.

MFD-ILP Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it. The solvers are implemented using Pytho

Algorithmic Bioinformatics Group @ University of Helsinki 4 Oct 23, 2022
Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction

Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction Requirements The code has been tested running under Python 3.7.4, with the foll

zshicode 84 Jan 01, 2023
Pyramid addon for OpenAPI3 validation of requests and responses.

Validate Pyramid views against an OpenAPI 3.0 document Peace of Mind The reason this package exists is to give you peace of mind when providing a REST

Pylons Project 79 Dec 30, 2022
Attention-based Transformation from Latent Features to Point Clouds (AAAI 2022)

Attention-based Transformation from Latent Features to Point Clouds This repository contains a PyTorch implementation of the paper: Attention-based Tr

12 Nov 11, 2022
Evolutionary Scale Modeling (esm): Pretrained language models for proteins

Evolutionary Scale Modeling This repository contains code and pre-trained weights for Transformer protein language models from Facebook AI Research, i

Meta Research 1.6k Jan 09, 2023
EfficientMPC - Efficient Model Predictive Control Implementation

efficientMPC Efficient Model Predictive Control Implementation The original algo

Vin 8 Dec 04, 2022