Pyramid addon for OpenAPI3 validation of requests and responses.

Overview

Validate Pyramid views against an OpenAPI 3.0 document

CircleCI for pyramid_openapi3 (master branch) Test coverage (master branch) Test coverage (master branch) latest version of pyramid_openapi3 on PyPI Supported Python versions License: MIT Built by these great folks! Talk to us in #pyramid on Freenode IRC

Peace of Mind

The reason this package exists is to give you peace of mind when providing a RESTful API. Instead of chasing down preventable bugs and saying sorry to consumers, you can focus on more important things in life.

  • Your API documentation is never out-of-date, since it is generated out of the API document that you write.
  • The documentation comes with try-it-out examples for every endpoint in your API. You don't have to provide (and maintain) curl commands to showcase how your API works. Users can try it themselves, right in their browsers.
  • Your API document is always valid, since your Pyramid app won't even start if the document does not comply with the OpenAPI 3.0 specification.
  • Automatic request payload validation and sanitization. Your views do not require any code for validation and input sanitation. Your view code only deals with business logic. Tons of tests never need to be written since every request, and its payload, is validated against your API document before it reaches your view code.
  • Your API responses always match your API document. Every response from your view is validated against your document and a 500 Internal Server Error is returned if the response does not exactly match what your document says the output of a certain API endpoint should be. This decreases the effects of Hyrum's Law.
  • A single source of truth. Because of the checks outlined above, you can be sure that whatever your API document says is in fact what is going on in reality. You have a single source of truth to consult when asking an API related question, such as "Remind me again, which fields are returned by the endpoint /user/info?".
  • Based on Pyramid, a mature Python Web framework. Companies such as Mozilla, Yelp, RollBar and SurveyMonkey trust Pyramid, and the new pypi.org runs on Pyramid, too. Pyramid is thoroughly tested and documented, providing flexibility, performance, and a large ecosystem of high-quality add-ons.

Building Robust APIs

Features

Getting started

  1. Declare pyramid_openapi3 as a dependency in your Pyramid project.

  2. Include the following lines:

config.include("pyramid_openapi3")
config.pyramid_openapi3_spec('openapi.yaml', route='/api/v1/openapi.yaml')
config.pyramid_openapi3_add_explorer(route='/api/v1/')
  1. Use the openapi view predicate to enable request/response validation:
@view_config(route_name="foobar", openapi=True, renderer='json')
def myview(request):
    return request.openapi_validated.parameters

For requests, request.openapi_validated is available with two fields: parameters and body. For responses, if the payload does not match the API document, an exception is raised.

Advanced configuration

Relative File References in Spec

A feature introduced in OpenAPI3 is the ability to use $ref links to external files (https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#referenceObject).

To use this, you must ensure that you have all of your spec files in a given directory (ensure that you do not have any code in this directory as all the files in it are exposed as static files), then replace the pyramid_openapi3_spec call that you did in Getting Started with the following:

config.pyramid_openapi3_spec_directory('path/to/openapi.yaml', route='/api/v1/spec')

Some notes:

  • Do not set the route of your pyramid_openapi3_spec_directory to the same value as the route of pyramid_openapi3_add_explorer.
  • The route that you set for pyramid_openapi3_spec_directory should not contain any file extensions, as this becomes the root for all of the files in your specified filepath.
  • You cannot use pyramid_openapi3_spec_directory and pyramid_openapi3_spec in the same app.

Endpoints / Request / Response Validation

Provided with pyramid_openapi3 are a few validation features:

  • incoming request validation (i.e., what a client sends to your app)
  • outgoing response validation (i.e., what your app sends to a client)
  • endpoint validation (i.e., your app registers routes for all defined API endpoints)

These features are enabled as a default, but you can disable them if you need to:

config.registry.settings["pyramid_openapi3.enable_endpoint_validation"] = False
config.registry.settings["pyramid_openapi3.enable_request_validation"] = False
config.registry.settings["pyramid_openapi3.enable_response_validation"] = False

Warning: Disabling request validation will result in request.openapi_validated no longer being available to use.

Register Pyramid's Routes

You can register routes in your pyramid application. First, write the x-pyramid-route-name extension in the PathItem of the OpenAPI schema.

paths:
  /foo:
    x-pyramid-route-name: foo_route
    get:
      responses:
        200:
          description: GET foo

Then put the config directive pyramid_openapi3_register_routes in the app_factory of your application.

config.pyramid_openapi3_register_routes()

This means is equals to

config.add_route("foo_route", pattern="/foo")

Demo / Examples

There are three examples provided with this package:

Both examples come with tests that exhibit pyramid_openapi's error handling and validation capabilities.

A fully built-out app, with 100% test coverage, providing a RealWorld.io API is available at niteoweb/pyramid-realworld-example-app. It is a Heroku-deployable Pyramid app that provides an API for a Medium.com-like social app. You are encouraged to use it as a scaffold for your next project.

Design defense

The authors of pyramid_openapi3 believe that the approach of validating a manually-written API document is superior to the approach of generating the API document from Python code. Here are the reasons:

  1. Both generation and validation against a document are lossy processes. The underlying libraries running the generation/validation will always have something missing. Either a feature from the latest OpenAPI specification, or an implementation bug. Having to fork the underlying library in order to generate the part of your API document that might only be needed for the frontend is unfortunate.

    Validation on the other hand allows one to skip parts of validation that are not supported yet, and not block a team from shipping the document.

  2. The validation approach does sacrifice DRY-ness, and one has to write the API document and then the (view) code in Pyramid. It feels a bit redundant at first. However, this provides a clear separation between the intent and the implementation.

  3. The generation approach has the drawback of having to write Python code even for parts of the API document that the Pyramid backend does not handle, as it might be handled by a different system, or be specific only to documentation or only to the client side of the API. This bloats your Pyramid codebase with code that does not belong there.

Running tests

You need to have pipenv and Python 3.7, 3.8, or 3.9 installed on your machine. Then you can run:

$ make tests

Related packages

These packages tackle the same problem-space:

  • pyramid_oas3 seems to do things very similarly to pyramid_openapi3, but the documentation is not in English and we sadly can't fully understand what it does by just reading the code.
  • pyramid_swagger does a similar thing, but for Swagger 2.0 documents.
  • connexion takes the same "write spec first, code second" approach as pyramid_openapi3, but is based on Flask.
  • bottle-swagger takes the same "write spec first, code second" approach too, but is based on Bottle.
  • pyramid_apispec uses generation with help of apispec and the marshmallow validation library. See above why we prefer validation instead of generation.

Deprecation policy

We do our best to follow the rules below.

  • Support the latest few releases of Python, currently Python 3.7, 3.8, and 3.9.
  • Support the latest few releases of Pyramid, currently 1.10.7 through 2.0.
  • Support the latest few releases of openapi-core, currently 0.13.4 through 0.13.8.
  • See Pipfile.lock for a frozen-in-time known-good-set of all dependencies.

Use in the wild

A couple of projects that use pyramid_openapi3 in production:

Owner
Pylons Project
The Pylons Project is composed of a disparate group of project leaders with experience going back to the very start of Python web frameworks.
Pylons Project
HandTailor: Towards High-Precision Monocular 3D Hand Recovery

HandTailor This repository is the implementation code and model of the paper "HandTailor: Towards High-Precision Monocular 3D Hand Recovery" (arXiv) G

Lv Jun 113 Jan 06, 2023
Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning

Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning Code for the paper Harmonious Textual Layout Generation over Nat

7 Aug 09, 2022
The Official TensorFlow Implementation for SPatchGAN (ICCV2021)

SPatchGAN: Official TensorFlow Implementation Paper "SPatchGAN: A Statistical Feature Based Discriminator for Unsupervised Image-to-Image Translation"

39 Dec 30, 2022
keyframes-CNN-RNN(action recognition)

keyframes-CNN-RNN(action recognition) Environment: python=3.7 pytorch=1.2 Datasets: Following the format of UCF101 action recognition. Run steps: Mo

4 Feb 09, 2022
OpenDILab Multi-Agent Environment

Go-Bigger: Multi-Agent Decision Intelligence Environment GoBigger Doc (中文版) Ongoing 2021.11.13 We are holding a competition —— Go-Bigger: Multi-Agent

OpenDILab 441 Jan 05, 2023
The CLRS Algorithmic Reasoning Benchmark

Learning representations of algorithms is an emerging area of machine learning, seeking to bridge concepts from neural networks with classical algorithms.

DeepMind 251 Jan 05, 2023
CSE-519---Project - Job Title Analysis (Project for CSE 519 - Data Science Fundamentals)

A Multifaceted Approach to Job Title Analysis CSE 519 - Data Science Fundamentals Project Description Project consists of three parts: Salary Predicti

Jimit Dholakia 1 Jan 04, 2022
Pseudo lidar - (CVPR 2019) Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving

Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving This paper has been accpeted by Conference o

Yan Wang 881 Dec 27, 2022
EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction

EquiBind: geometric deep learning for fast predictions of the 3D structure in which a small molecule binds to a protein

Hannes Stärk 355 Jan 03, 2023
Code for the ICCV 2021 paper "Pixel Difference Networks for Efficient Edge Detection" (Oral).

Microsoft365_devicePhish Abusing Microsoft 365 OAuth Authorization Flow for Phishing Attack This is a simple proof-of-concept script that allows an at

Alex 236 Dec 21, 2022
Weakly Supervised Segmentation by Tensorflow.

Weakly Supervised Segmentation by Tensorflow. Implements semantic segmentation in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

CHENG-YOU LU 52 Dec 27, 2022
BRNet - code for Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss function

BRNet code for "Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss func

Yong Pi 2 Mar 09, 2022
Rl-quickstart - Reinforcement Learning Quickstart

Reinforcement Learning Quickstart To get setup with the repository, git clone ht

UCLA DataRes 3 Jun 16, 2022
Hyperbolic Image Segmentation, CVPR 2022

Hyperbolic Image Segmentation, CVPR 2022 This is the implementation of paper Hyperbolic Image Segmentation (CVPR 2022). Repository structure assets :

Mina Ghadimi Atigh 46 Dec 29, 2022
Synthesizing and manipulating 2048x1024 images with conditional GANs

pix2pixHD Project | Youtube | Paper Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic image-to-image translatio

NVIDIA Corporation 6k Dec 27, 2022
This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

212 Dec 25, 2022
A simple Neural Network that predicts the label for a series of handwritten digits

Neural_Network A simple Neural Network that predicts the label for a series of handwritten numbers This program tries to predict the label (1,2,3 etc.

Ty 1 Dec 18, 2021
LLVIP: A Visible-infrared Paired Dataset for Low-light Vision

LLVIP: A Visible-infrared Paired Dataset for Low-light Vision Project | Arxiv | Abstract It is very challenging for various visual tasks such as image

CVSM Group - email: <a href=[email protected]"> 377 Jan 07, 2023
Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

26 Dec 07, 2022
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023