Code for the CVPR2021 paper "Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition"

Overview

Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition

License: MIT stars GitHub issues GitHub closed issues GitHub repo size QUT Centre for Robotics

PWC PWC PWC PWC PWC PWC

This repository contains code for the CVPR2021 paper "Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition"

The article can be found on arXiv and the official proceedings.

Patch-NetVLAD method diagram

License + attribution/citation

When using code within this repository, please refer the following paper in your publications:

@inproceedings{hausler2021patchnetvlad,
  title={Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition},
  author={Hausler, Stephen and Garg, Sourav and Xu, Ming and Milford, Michael and Fischer, Tobias},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={14141--14152},
  year={2021}
}

The code is licensed under the MIT License.

Installation

We recommend using conda (or better: mamba) to install all dependencies. If you have not yet installed conda/mamba, please download and install mambaforge.

conda create -n patchnetvlad python=3.8 numpy pytorch-gpu torchvision natsort tqdm opencv pillow scikit-learn faiss matplotlib-base -c conda-forge

conda activate patchnetvlad

We provide several pre-trained models and configuration files. The pre-trained models will be downloaded automatically into the pretrained_models the first time feature extraction is performed.

Alternatively, you can manually download the pre-trained models into a folder of your choice; click to expand if you want to do so.

We recommend downloading the models into the pretrained_models folder (which is setup in the config files within the configs directory):

# Note: the pre-trained models will be downloaded automatically the first time feature extraction is performed
# the steps below are optional!

# You can use the download script which automatically downloads the models:
python ./download_models.py

# Manual download:
cd pretrained_models
wget -O mapillary_WPCA128.pth.tar https://cloudstor.aarnet.edu.au/plus/s/vvr0jizjti0z2LR/download
wget -O mapillary_WPCA512.pth.tar https://cloudstor.aarnet.edu.au/plus/s/DFxbGgFwh1y1wAz/download
wget -O mapillary_WPCA4096.pth.tar https://cloudstor.aarnet.edu.au/plus/s/ZgW7DMEpeS47ELI/download
wget -O pittsburgh_WPCA128.pth.tar https://cloudstor.aarnet.edu.au/plus/s/2ORvaCckitjz4Sd/download
wget -O pittsburgh_WPCA512.pth.tar https://cloudstor.aarnet.edu.au/plus/s/WKl45MoboSyB4SH/download
wget -O pittsburgh_WPCA4096.pth.tar https://cloudstor.aarnet.edu.au/plus/s/1aoTGbFjsekeKlB/download

If you want to use the shortcuts patchnetvlad-match-two, patchnetvlad-feature-match and patchnetvlad-feature-extract, you also need to run (which also lets you use Patch-NetVLAD in a modular way):

pip3 install --no-deps -e .

Quick start

Feature extraction

Replace performance.ini with speed.ini or storage.ini if you want, and adapt the dataset paths - examples are given for the Pittsburgh30k dataset (simply replace pitts30k with tokyo247 or nordland for these datasets).

python feature_extract.py \
  --config_path patchnetvlad/configs/performance.ini \
  --dataset_file_path=pitts30k_imageNames_index.txt \
  --dataset_root_dir=/path/to/your/pitts/dataset \
  --output_features_dir patchnetvlad/output_features/pitts30k_index

Repeat for the query images by replacing _index with _query. Note that you have to adapt dataset_root_dir.

Feature matching (dataset)

python feature_match.py \
  --config_path patchnetvlad/configs/performance.ini \
  --dataset_root_dir=/path/to/your/pitts/dataset \
  --query_file_path=pitts30k_imageNames_query.txt \
  --index_file_path=pitts30k_imageNames_index.txt \
  --query_input_features_dir patchnetvlad/output_features/pitts30k_query \
  --index_input_features_dir patchnetvlad/output_features/pitts30k_index \
  --ground_truth_path patchnetvlad/dataset_gt_files/pitts30k_test.npz \
  --result_save_folder patchnetvlad/results/pitts30k

Note that providing ground_truth_path is optional.

This will create three output files in the folder specified by result_save_folder:

  • recalls.txt with a plain text output (only if ground_truth_path is specified)
  • NetVLAD_predictions.txt with top 100 reference images for each query images obtained using "vanilla" NetVLAD in Kapture format
  • PatchNetVLAD_predictions.txt with top 100 reference images from above re-ranked by Patch-NetVLAD, again in Kapture format

Feature matching (two files)

python match_two.py \
--config_path patchnetvlad/configs/performance.ini \
--first_im_path=patchnetvlad/example_images/tokyo_query.jpg \
--second_im_path=patchnetvlad/example_images/tokyo_db.png

We provide the match_two.py script which computes the Patch-NetVLAD features for two given images and then determines the local feature matching between these images. While we provide example images, any image pair can be used.

The script will print a score value as an output, where a larger score indicates more similar images and a lower score means dissimilar images. The function also outputs a matching figure, showing the patch correspondances (after RANSAC) between the two images. The figure is saved as results/patchMatchings.png.

FAQ

Patch-NetVLAD qualitative results

How to Create New Ground Truth Files

We provide three ready-to-go ground truth files in the dataset_gt_files folder, however, for evaluation on other datasets you will need to create your own .npz ground truth data files. Each .npz stores three variables: utmQ (a numpy array of floats), utmDb (a numpy array of floats) and posDistThr (a scalar numpy float).

Each successive element within utmQ and utmDb needs to correspond to the corresponding row of the image list file. posDistThr is the ground truth tolerance value (typically in meters).

The following mock example details the steps required to create a new ground truth file:

  1. Collect GPS data for your query and database traverses and convert to utm format. Ensure the data is sampled at the same rate as your images.
  2. Select your own choice of posDistThr value.
  3. Save these variables using Numpy, such as this line of code: np.savez('dataset_gt_files/my_dataset.npz', utmQ=my_utmQ, utmDb=my_utmDb, posDistThr=my_posDistThr)

Acknowledgements

We would like to thank Gustavo Carneiro, Niko Suenderhauf and Mark Zolotas for their valuable comments in preparing this paper. This work received funding from the Australian Government, via grant AUSMURIB000001 associated with ONR MURI grant N00014-19-1-2571. The authors acknowledge continued support from the Queensland University of Technology (QUT) through the Centre for Robotics.

Related works

Please check out this collection of related works on place recognition.

Comments
  • Fixing val.py incorrect recalls issue #43

    Fixing val.py incorrect recalls issue #43

    Made changes to val.py that should fix the indices issue that was causing low reported recalls for mapillary validation on the cph and sf datasets. Without PCA, the recalls with NetVLAD (with the mapillary trained model) are now: 0.495, 0.65, 0.718, 0.77, 0.83, 0.868.

    opened by StephenHausler 10
  • About the result on Mapillary

    About the result on Mapillary

    Thank you for this nice code base and paper. I am trying to reproduce the result on Mapillary following the training from scratch instruction. However, after training for multiple weeks, the result is still extremely low: image

    Is the result before PCAW supposed to be like this? Or maybe there is something wrong? I just follow the instruction: python train.py
    --config_path patchnetvlad/configs/train.ini
    --cache_path=/path/to/your/desired/cache/folder
    --save_path=/path/to/your/desired/checkpoint/save/folder
    --dataset_root_dir=/path/to/your/mapillary/dataset And there is no error reported. Thank you so much for your time. Looking forward to hearing from you.

    opened by Jeff-Zilence 9
  • Downloading Nordland dataset

    Downloading Nordland dataset

    Hi, will you release your version of the Nordland dataset? It would be great to have the chance to download the dataset directly, as it would avoid possible inconsistencies. Also, there shouldn't be any legal issue given that it is licensed under Creative Commons :-)

    opened by gmberton 6
  • permission for loading the model [certificate verify failed]

    permission for loading the model [certificate verify failed]

    hi :) I installed all packages and tried to run "match_two.py" file. for loading Auto-download pretrained models, it asked me so I type "YES" but i got a error message. [certificate verify failed]

    I am using Window PC, please let me know how to solve this. thanks

    image

    opened by jaaaaaang 6
  • Reproduce results of NetVLAD on RobotCar Seasons v2

    Reproduce results of NetVLAD on RobotCar Seasons v2

    @Tobias-Fischer @oravus Hi,first,I really appreciate for your work. I'm trying to reproduce results of NetVLAD on RobotCar Seasons v2 in the Table 1 and Supplementary Table 1,but encountered some problems.I have extracted the global descriptor using Netvlad with netvlad_extract.ini.May I ask if it is convenient to supplement the subsequent code to facilitate the reoccurrence work?Perhaps it would be better to have detailed instructions. I am always looking forward to your kind response. Best regards.

    opened by MAX-OTW 5
  • question about training loss

    question about training loss

    Hi, I really appreciate for the work! It is helpful for me to try it with your instructions. But I have a question about training. I try to retrain the network (with original Vgg16 backbone or change it to ResNet18, cropped it properly and maintain most of the parameters as the pretrained weights). I found that the loss went down rapidly at the first epoch and almost reach to 0.00. Would you describe the change of your loss when you train this network? Thank you very much!

    Best regards

    opened by LyyyyyyyN 5
  • how to use pool=patchnetvlad to train the network

    how to use pool=patchnetvlad to train the network

    Dear,

    Thank you for the great job!

    I got a question about how to use the output of patchnetvlad to train the network while vlad_local and vlad_global are generated at the same time. is it OK to use the vlad_global feature to estimate the triplet loss?

    Best, Qiang

    opened by zhaiqx 5
  • Question about “posDistThr” of the Nordland dataset

    Question about “posDistThr” of the Nordland dataset

    Hi, thanks for your work. I have a question about “posDistThr” of Nordland dataset. This repository sets the utm coordinate of i-th frame to (i,i) in the Nordland.npz file, which allows us to have a consistent function for evaluating [email protected] for all datasets. It's great! The tolerance for Nordland dataset is 10 frames in the Patch-NetVLAD paper. However, the radius of the first frame (0,0) to the 11-th frame (10,10) is 10sqrt(2) rather than 10. The “posDistThr” is set to 10 in Nordland.npz file in this repository. I have wrote a script to calculate [email protected] on Nordland (tolerance is 2 frames). The result is consistent with setting the “posDistThr” to 2sqrt(2) rather than 2.

    opened by Lu-Feng 4
  • Reproduce the results of DELG in the paper

    Reproduce the results of DELG in the paper

    Hi, thank you for sharing this great work. In the official paper, DELG achieves the top performance on some datasets. May I know how to reproduce those results of DELG? Do you use the pre-trained model or fine-tune it on Pitts30k/MSLS?

    opened by hellocasper 4
  • Incorrect Aachen Day-Night result

    Incorrect Aachen Day-Night result

    Hi, I tried to use your pretrained pittsburgh_WPCA4096 model to test on Aachen Day-Night dataset, but got totally incorrect result. here is my complete process.

    1. generate Aachen_db_path.txt and Aachen_query_path.txt

    2. run the feature_extract.py for db and query images use following two commands.

    python feature_extract.py \
      --config_path patchnetvlad/configs/speed.ini \
      --dataset_file_path=Aachen_db_path.txt \
      --output_features_dir patchnetvlad/output_features/aachen_index
    
    python feature_extract.py \
      --config_path patchnetvlad/configs/speed.ini \
      --dataset_file_path=Aachen_query_path.txt \
      --output_features_dir patchnetvlad/output_features/aachen_query
    
    1. run the 'feture_match.py' for feature matching without providing ground_truth_path
    python feature_match.py \
      --config_path patchnetvlad/configs/speed.ini \
      --query_file_path=Aachen_query_path.txt \
      --index_file_path=Aachen_db_path.txt \
      --query_input_features_dir patchnetvlad/output_features/aachen_query \
      --index_input_features_dir patchnetvlad/output_features/aachen_index \
      --result_save_folder patchnetvlad/results/aachen_subset
    
    1. then process PatchNetVLAD_predictions.txt, for each query image it output top 100 reference images. I just used the pose of top1 reference image as the estimated pose of each query image and post the result to benchmark, but got totally wrong result. here is the result:

    image

    I want to know what's wrong with my steps and why it outputs such unacceptable results. Is the model version that I used is wrong? Or have you test your models on Aachen dataset, if you did, could you please provide the result ?

    opened by HeartbreakSurvivor 4
  • About RobotCar v2 results

    About RobotCar v2 results

    Hi, I really appreciate for your work. I'm trying to reproduce your result on RobotCar seasons v2 dataset and encountered some problems. Which dataset split is used in the Tables 1 and 2 of the main paper, test or train? Besides, are these results integrate ALL conditions including day and night?

    I noticed that the Suppl. Table 1. reports results for each condition obtained from the training split. But when I tried to summary these results in Suppl. Table 1. using statistics on the train query set, I failed to obtain the results in the Tables 1 of the main paper. So I'm a bit confused about the dataset settings.

    I am always looking forward to your kind response.

    Best regards,

    opened by RuotongWANG 4
  • Can't reproduce Robotcar results

    Can't reproduce Robotcar results

    Hi, I tried to reproduce your result on Robotcar Seasons V2 test set by submitting to the challenge submission server. I used the released performance-focused model which is pre-trained on MSLS dataset, but I got this incorrect result: image And I tried the model pre-trained on Pitts30k, the results are not correct either. image Besides, the results on other datasets is normal. Is the model version that I used is wrong? Could you possibly release the model state that achieves the results on Robotcat dataset shown in the paper? Or would you provide the results on test set split by conditions like the Supplementary Table 1? Thank you so much.

    Best regards,

    opened by RuotongWANG 11
  • Train on custom dataset

    Train on custom dataset

    Hi, I really appreciate for the work you've done. I wondered if the training code will be released, which can be used to train our custom dataset, thanks.

    Best regards.

    opened by JiananZhao0224 14
Releases(v0.1.6)
  • v0.1.6(Nov 11, 2021)

    Training code

    This release adds code to train NetVLAD on the Mapillary dataset + PCAing models using either Mapillary dataset or Pittsburgh (https://github.com/QVPR/Patch-NetVLAD/pull/20 and https://github.com/QVPR/Patch-NetVLAD/pull/39)

    Bugfixes

    • Support for Multi-GPU inference (https://github.com/QVPR/Patch-NetVLAD/pull/22 - thanks @michaelschleiss)
    • Fix in keypoint positions (https://github.com/QVPR/Patch-NetVLAD/commit/6005b555cf05414afac3f3c0203e22a249d05b91)
    • Fix recalls when validating on Mapillary dataset (https://github.com/QVPR/Patch-NetVLAD/pull/44)

    Full Changelog: https://github.com/QVPR/Patch-NetVLAD/compare/v0.1.5...v0.1.6

    Source code(tar.gz)
    Source code(zip)
  • v0.1.5(Jun 22, 2021)

  • v0.1.4(Jun 11, 2021)

  • v0.1.2(Jun 2, 2021)

  • v0.1.1(Jun 2, 2021)

Owner
QVPR
QVPR
An Unbiased Learning To Rank Algorithms (ULTRA) toolbox

Unbiased Learning to Rank Algorithms (ULTRA) This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiment

back 3 Nov 18, 2022
A Dataset for Direct Quotation Extraction and Attribution in News Articles.

DirectQuote - A Dataset for Direct Quotation Extraction and Attribution in News Articles DirectQuote is a corpus containing 19,760 paragraphs and 10,3

THUNLP-MT 9 Sep 23, 2022
Code release for ICCV 2021 paper "Anticipative Video Transformer"

Anticipative Video Transformer Ranked first in the Action Anticipation task of the CVPR 2021 EPIC-Kitchens Challenge! (entry: AVT-FB-UT) [project page

Facebook Research 123 Dec 13, 2022
FastReID is a research platform that implements state-of-the-art re-identification algorithms.

FastReID is a research platform that implements state-of-the-art re-identification algorithms.

JDAI-CV 2.8k Jan 07, 2023
A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning.

Open3DSOT A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning. The official code release of BAT an

Kangel Zenn 172 Dec 23, 2022
This repo tries to recognize faces in the dataset you created

YÜZ TANIMA SİSTEMİ Bu repo oluşturacağınız yüz verisetlerini tanımaya çalışan ma

Mehdi KOŞACA 2 Dec 30, 2021
A PyTorch implementation of the Relational Graph Convolutional Network (RGCN).

Torch-RGCN Torch-RGCN is a PyTorch implementation of the RGCN, originally proposed by Schlichtkrull et al. in Modeling Relational Data with Graph Conv

Thiviyan Singam 66 Nov 30, 2022
PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

WuJinxuan 144 Dec 26, 2022
Paper: De-rendering Stylized Texts

Paper: De-rendering Stylized Texts Wataru Shimoda1, Daichi Haraguchi2, Seiichi Uchida2, Kota Yamaguchi1 1CyberAgent.Inc, 2 Kyushu University Accepted

CyberAgent AI Lab 55 Dec 18, 2022
Fusion-in-Decoder Distilling Knowledge from Reader to Retriever for Question Answering

This repository contains code for: Fusion-in-Decoder models Distilling Knowledge from Reader to Retriever Dependencies Python 3 PyTorch (currently tes

Meta Research 323 Dec 19, 2022
General Vision Benchmark, a project from OpenGVLab

Introduction We build GV-B(General Vision Benchmark) on Classification, Detection, Segmentation and Depth Estimation including 26 datasets for model e

174 Dec 27, 2022
🕺Full body detection and tracking

Pose-Detection 🤔 Overview Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign

Abbas Ataei 20 Nov 21, 2022
MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks

MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks Introduction This repo contains the pytorch impl

Meta Research 38 Oct 10, 2022
[ICCV'2021] "SSH: A Self-Supervised Framework for Image Harmonization", Yifan Jiang, He Zhang, Jianming Zhang, Yilin Wang, Zhe Lin, Kalyan Sunkavalli, Simon Chen, Sohrab Amirghodsi, Sarah Kong, Zhangyang Wang

SSH: A Self-Supervised Framework for Image Harmonization (ICCV 2021) code for SSH Representative Examples Main Pipeline RealHM DataSet Google Drive Pr

VITA 86 Dec 02, 2022
Solution of Kaggle competition: Sartorius - Cell Instance Segmentation

Sartorius - Cell Instance Segmentation https://www.kaggle.com/c/sartorius-cell-instance-segmentation Environment setup Build docker image bash .dev_sc

68 Dec 09, 2022
Motion and Shape Capture from Sparse Markers

MoSh++ This repository contains the official chumpy implementation of mocap body solver used for AMASS: AMASS: Archive of Motion Capture as Surface Sh

Nima Ghorbani 135 Dec 23, 2022
This repository contains all source code, pre-trained models related to the paper "An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator"

An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator This is a Pytorch implementation for the paper "An Empirical Study o

Cuong Nguyen 3 Nov 15, 2021
Official implementation of deep Gaussian process (DGP)-based multi-speaker speech synthesis with PyTorch.

Multi-speaker DGP This repository provides official implementation of deep Gaussian process (DGP)-based multi-speaker speech synthesis with PyTorch. O

sarulab-speech 24 Sep 07, 2022
Unofficial PyTorch code for BasicVSR

Dependencies and Installation The code is based on BasicSR, Please install the BasicSR framework first. Pytorch=1.51 Training cd ./code CUDA_VISIBLE_

Long 59 Dec 06, 2022
Code for CVPR2019 Towards Natural and Accurate Future Motion Prediction of Humans and Animals

Motion prediction with Hierarchical Motion Recurrent Network Introduction This work concerns motion prediction of articulate objects such as human, fi

Shuang Wu 85 Dec 11, 2022