Mapomatic - Automatic mapping of compiled circuits to low-noise sub-graphs

Overview

mapomatic

Automatic mapping of compiled circuits to low-noise sub-graphs

Overview

One of the main painpoints in executing circuits on IBM Quantum hardware is finding the best qubit mapping. For a given circuit, one typically tries to pick the best initial_layout for a given target system, and then SWAP maps using that set of qubits as the starting point. However there are a couple of issues with that execution model. First, an initial_layout seletected, for example with respect to the noise characteristics of the system, need not be optimal for the SWAP mapping. In practice this leads to either low-noise layouts with extra SWAP gates inserted in the circuit, or optimally SWAP mapped circuits on (possibly) lousy qubits. Second, there is no way to know if the system you targeted in the compilation is actually the best one to execute the compiled circuit on. With 20+ quantum systems, it is hard to determine which device is actually ideal for a given problem.

mapomatic tries to tackle these issues in a different way. mapomatic is a post-compilation routine that finds the best low noise sub-graph on which to run a circuit given one or more quantum systems as target devices. Once compiled, a circuit has been rewritten so that its two-qubit gate structure matches that of a given sub-graph on the target system. mapomatic then searches for matching sub-graphs using the VF2 mapper in Qiskit (retworkx actually), and uses a heuristic to rank them based on error rates determined by the current calibration data. That is to say that given a single target system, mapomatic will return the best set of qubits on which to execute the compiled circuit. Or, given a list of systems, it will find the best system and set of qubits on which to run your circuit. Given the current size of quantum hardware, and the excellent performance of the VF2 mapper, this whole process is actually very fast.

Usage

To begin we first import what we need and load our IBM Quantum account.

import numpy as np
from qiskit import *
import mapomatic as mm

IBMQ.load_account()

Second we will select a provider that has one or more systems of interest in it:

provider = IBMQ.get_provider(group='deployed')

We then go through the usual step of making a circuit and calling transpile on a given backend:

qc = QuantumCircuit(5)
qc.h(0)
qc.cx(0,1)
qc.cx(0,2)
qc.cx(0,3)
qc.cx(0,4)
qc.measure_all()

Here we use optimization_level=3 as it is the best overall. It is also not noise-aware though, and thus can select lousy qubits on which to do a good SWAP mapping

trans_qc = transpile(qc, provider.get_backend('ibm_auckland'),optimization_level=3)

Now, a call to transpile inflates the circuit to the number of qubits in the target system. For small problems like the example here, this prevents us from finding the smaller sub-graphs. Thus we need to deflate the circuit down to just the number of active qubits:

small_qc = mm.deflate_circuit(trans_qc)

This deflated circuit, along with one or more backends can now be used to find the ideal system and mapping. Here we will look over all systems in the provider:

backends = provider.backends()

mm.best_mapping(small_qc, backends)

that returns a tuple with the target layout, system, and the computed error score:

([2, 1, 3, 5, 8], 'ibm_auckland', 0.09518597703355036)

You can then use the best layout in a new call to transpile which will then do the desired mapping for you. Alternatively, we can ask for the best mapping on all systems, yielding a list sorted in order from best to worse:

mm.best_mapping(small_qc, backends, successors=True)
[([2, 1, 3, 5, 8], 'ibm_auckland', 0.09518597703355036),
 ([7, 10, 4, 1, 0], 'ibm_hanoi', 0.11217956761629977),
 ([5, 6, 3, 1, 2], 'ibm_lagos', 0.1123755285308975),
 ([7, 6, 10, 12, 15], 'ibmq_mumbai', 0.13708593236124922),
 ([3, 2, 5, 8, 9], 'ibmq_montreal', 0.13762962991865924),
 ([2, 1, 3, 5, 8], 'ibm_cairo', 0.1423752001642351),
 ([1, 2, 3, 5, 6], 'ibmq_casablanca', 0.15623594190953083),
 ([4, 3, 5, 6, 7], 'ibmq_brooklyn', 0.16468576058762707),
 ([7, 6, 10, 12, 15], 'ibmq_guadalupe', 0.17186581811649904),
 ([5, 3, 8, 11, 14], 'ibmq_toronto', 0.1735555283027388),
 ([5, 4, 3, 1, 0], 'ibmq_jakarta', 0.1792325518776976),
 ([2, 3, 1, 0, 14], 'ibm_washington', 0.2078576175452339),
 ([1, 0, 2, 3, 4], 'ibmq_bogota', 0.23973220166838316),
 ([1, 2, 3, 5, 6], 'ibm_perth', 0.31268969778002176),
 ([3, 4, 2, 1, 0], 'ibmq_manila', 0.3182338194159915),
 ([1, 0, 2, 3, 4], 'ibmq_santiago', 1.0)]

Because of the stochastic nature of the SWAP mapping, the optimal sub-graph may change over repeated compilations.

Getting optimal results

Because the SWAP mappers in Qiskit are stochastic, the number of inserted SWAP gates can vary with each run. The spread in this number can be quite large, and can impact the performance of your circuit. It is thus beneficial to transpile many instances of a circuit and take the best one. For example:

trans_qc_list = transpile([qc]*20, provider.get_backend('ibm_auckland'), optimization_level=3)

best_cx_count = [circ.count_ops()['cx'] for circ in trans_qc_list]
best_cx_count
[10, 13, 10, 7, 7, 10, 10, 7, 10, 7, 10, 10, 10, 10, 5, 7, 6, 13, 7, 10]

We obviously want the one with minimum CNOT gates here:

best_idx = np.where(best_cx_count == np.min(best_cx_count))[0][0]
best_qc = trans_qc_list[best_idx] 

We can then use this best mapped circuit to find the ideal qubit candidates via mapomatic.

best_small_qc = mm.deflate_circuit(best_qc)
mm.best_mapping(best_small_qc, backends, successors=True)
[([11, 13, 14, 16, 19], 'ibm_auckland', 0.07634155667667142),
 ([2, 0, 1, 4, 7], 'ibm_hanoi', 0.0799012562006044),
 ([4, 6, 5, 3, 1], 'ibm_lagos', 0.09374259142721897),
 ([10, 15, 12, 13, 14], 'ibm_cairo', 0.0938958618334792),
 ([5, 9, 8, 11, 14], 'ibmq_montreal', 0.09663069814643488),
 ([10, 6, 7, 4, 1], 'ibmq_mumbai', 0.10253149958591112),
 ([10, 15, 12, 13, 14], 'ibmq_guadalupe', 0.11075230351892806),
 ([11, 5, 4, 3, 2], 'ibmq_brooklyn', 0.13179514610612808),
 ([0, 2, 1, 3, 5], 'ibm_perth', 0.13309987649094324),
 ([4, 6, 5, 3, 1], 'ibmq_casablanca', 0.13570907147053013),
 ([2, 0, 1, 3, 5], 'ibmq_jakarta', 0.14449169384159954),
 ([5, 9, 8, 11, 14], 'ibmq_toronto', 0.1495199193756318),
 ([2, 0, 1, 3, 4], 'ibmq_quito', 0.16858894163955718),
 ([0, 2, 1, 3, 4], 'ibmq_belem', 0.1783430267967986),
 ([0, 2, 1, 3, 4], 'ibmq_lima', 0.20380730100751476),
 ([23, 25, 24, 34, 43], 'ibm_washington', 0.23527393065514557)]
Owner
Qiskit Partners
Qiskit Partners
RockNext is an Open Source extending ERPNext built on top of Frappe bringing enterprise ready utilization.

RockNext is an Open Source extending ERPNext built on top of Frappe bringing enterprise ready utilization.

Matheus Breguêz 13 Oct 12, 2022
Simple and lightweight Spotify Overlay written in Python.

Simple Spotify Overlay This is a simple yet powerful Spotify Overlay. About I have been looking for something like this ever since I got Spotify. I th

27 Sep 03, 2022
Moscow DEG 2021 elections plots

Построение графиков на основе публичных данных о ДЭГ в Москве в 2021г. Описание Скрипты в данном репозитории позволяют собственноручно построить графи

9 Jul 15, 2022
Make visual music sheets for thatskygame (graphical representations of the Sky keyboard)

sky-python-music-sheet-maker This program lets you make visual music sheets for Sky: Children of the Light. It will ask you a few questions, and does

21 Aug 26, 2022
Simple plotting for Python. Python wrapper for D3xter - render charts in the browser with simple Python syntax.

PyDexter Simple plotting for Python. Python wrapper for D3xter - render charts in the browser with simple Python syntax. Setup $ pip install PyDexter

D3xter 31 Mar 06, 2021
These data visualizations were created as homework for my CS40 class. I hope you enjoy!

Data Visualizations These data visualizations were created as homework for my CS40 class. I hope you enjoy! Nobel Laureates by their Country of Birth

9 Sep 02, 2022
Data aggregated from the reports found at the MCPS COVID Dashboard into a set of visualizations.

Montgomery County Public Schools COVID-19 Visualizer Contents About this project Data Support this project About this project Data All data we use can

James 3 Jan 19, 2022
1900-2016 Olympic Data Analysis in Python by plotting different graphs

🔥 Olympics Data Analysis 🔥 In Data Science field, there is a big topic before creating a model for future prediction is Data Analysis. We can find o

Sayan Roy 1 Feb 06, 2022
Scientific Visualization: Python + Matplotlib

An open access book on scientific visualization using python and matplotlib

Nicolas P. Rougier 8.6k Dec 31, 2022
Small project to recursively calculate and plot each successive order of the Hilbert Curve

hilbert-curve Small project to recursively calculate and plot each successive order of the Hilbert Curve. After watching 3Blue1Brown's video on Hilber

Stefan Mejlgaard 2 Nov 15, 2021
Graphing communities on Twitch.tv in a visually intuitive way

VisualizingTwitchCommunities This project maps communities of streamers on Twitch.tv based on shared viewership. The data is collected from the Twitch

Kiran Gershenfeld 312 Jan 07, 2023
Realtime Viewer Mandelbrot set with Python and Taichi (cpu, opengl, cuda, vulkan, metal)

Mandelbrot-set-Realtime-Viewer- Realtime Viewer Mandelbrot set with Python and Taichi (cpu, opengl, cuda, vulkan, metal) Control: "WASD" - movement, "

22 Oct 31, 2022
Bar Chart of the number of Senators from each party who are up for election in the next three General Elections

Congress-Analysis Bar Chart of the number of Senators from each party who are up for election in the next three General Elections This bar chart shows

11 Oct 26, 2021
Some method of processing point cloud

Point-Cloud Some method of processing point cloud inversion the completion pointcloud to incomplete point cloud Some model of encoding point cloud to

Tan 1 Nov 19, 2021
🎨 Python3 binding for `@AntV/G2Plot` Plotting Library .

PyG2Plot 🎨 Python3 binding for @AntV/G2Plot which an interactive and responsive charting library. Based on the grammar of graphics, you can easily ma

hustcc 990 Jan 05, 2023
Squidpy is a tool for the analysis and visualization of spatial molecular data.

Squidpy is a tool for the analysis and visualization of spatial molecular data. It builds on top of scanpy and anndata, from which it inherits modularity and scalability. It provides analysis tools t

Theis Lab 251 Dec 19, 2022
Declarative statistical visualization library for Python

Altair http://altair-viz.github.io Altair is a declarative statistical visualization library for Python. With Altair, you can spend more time understa

Altair 8k Jan 05, 2023
finds grocery stores and stuff next to route (gpx)

Route-Report Route report is a command-line utility that can be used to locate points-of-interest near your planned route (gpx). The results are based

Clemens Mosig 5 Oct 10, 2022
A Python Binder that merge 2 files with any extension by creating a new python file and compiling it to exe which runs both payloads.

Update ! ANONFILE MIGHT NOT WORK ! About A Python Binder that merge 2 files with any extension by creating a new python file and compiling it to exe w

Vesper 15 Oct 12, 2022
Easily convert matplotlib plots from Python into interactive Leaflet web maps.

mplleaflet mplleaflet is a Python library that converts a matplotlib plot into a webpage containing a pannable, zoomable Leaflet map. It can also embe

Jacob Wasserman 502 Dec 28, 2022