Understanding and Overcoming the Challenges of Efficient Transformer Quantization

Overview

Transformer Quantization

This repository contains the implementation and experiments for the paper presented in

Yelysei Bondarenko1, Markus Nagel1, Tijmen Blankevoort1, "Understanding and Overcoming the Challenges of Efficient Transformer Quantization", EMNLP 2021. [ACL Anthology] [ArXiv]

1 Qualcomm AI Research (Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.)

Reference

If you find our work useful, please cite

@inproceedings{bondarenko-etal-2021-understanding,
    title = "Understanding and Overcoming the Challenges of Efficient Transformer Quantization",
    author = "Bondarenko, Yelysei  and
      Nagel, Markus  and
      Blankevoort, Tijmen",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.627",
    pages = "7947--7969",
    abstract = "Transformer-based architectures have become the de-facto standard models for a wide range of Natural Language Processing tasks. However, their memory footprint and high latency are prohibitive for efficient deployment and inference on resource-limited devices. In this work, we explore quantization for transformers. We show that transformers have unique quantization challenges {--} namely, high dynamic activation ranges that are difficult to represent with a low bit fixed-point format. We establish that these activations contain structured outliers in the residual connections that encourage specific attention patterns, such as attending to the special separator token. To combat these challenges, we present three solutions based on post-training quantization and quantization-aware training, each with a different set of compromises for accuracy, model size, and ease of use. In particular, we introduce a novel quantization scheme {--} per-embedding-group quantization. We demonstrate the effectiveness of our methods on the GLUE benchmark using BERT, establishing state-of-the-art results for post-training quantization. Finally, we show that transformer weights and embeddings can be quantized to ultra-low bit-widths, leading to significant memory savings with a minimum accuracy loss. Our source code is available at \url{https://github.com/qualcomm-ai-research/transformer-quantization}.",
}

How to install

First, ensure locale variables are set as follows:

export LC_ALL=C.UTF-8
export LANG=C.UTF-8

Second, make sure to have Python ≥3.6 (tested with Python 3.6.8) and ensure the latest version of pip (tested with 21.2.4):

pip install --upgrade --no-deps pip

Next, install PyTorch 1.4.0 with the appropriate CUDA version (tested with CUDA 10.0, CuDNN 7.6.3):

pip install torch==1.4.0 torchvision==0.5.0 -f https://download.pytorch.org/whl/torch_stable.html

Finally, install the remaining dependencies using pip:

pip install -r requirements.txt

To run the code, the project root directory needs to be added to your pythonpath:

export PYTHONPATH="${PYTHONPATH}:/path/to/this/dir"

Running experiments

The main run file to reproduce all experiments is main.py. It contains 4 commands to train and validate FP32 and quantized model:

Usage: main.py [OPTIONS] COMMAND [ARGS]...

Options:
  --help  Show this message and exit.

Commands:
  train-baseline
  train-quantized
  validate-baseline
  validate-quantized

You can see the full list of options for each command using python main.py [COMMAND] --help.

A. FP32 fine-tuning

To start with, you need to get the fune-tuned model(s) for the GLUE task of interest. Example run command for fine-tuning:

python main.py train-baseline --cuda --save-model --model-name bert_base_uncased --task rte \
    --learning-rate 3e-05 --batch-size 8 --eval-batch-size 8 --num-epochs 3 --max-seq-length 128 \
    --seed 1000 --output-dir /path/to/output/dir/

You can also do it directly using HuggingFace library [examples]. In all experiments we used seeds 1000 - 1004 and reported the median score. The sample output directory looks as follows:

/path/to/output/dir
├── config.out
├── eval_results_rte.txt
├── final_score.txt
├── out
│   ├── config.json  # Huggingface model config
│   ├── pytorch_model.bin  # PyTorch model checkpoint
│   ├── special_tokens_map.json
│   ├── tokenizer_config.json  # Huggingface tokenizer config
│   ├── training_args.bin
│   └── vocab.txt  # Vocabulary
└── tb_logs  # TensorBoard logs
    ├── 1632747625.1250594
    │   └── events.out.tfevents.*
    └── events.out.tfevents.*

For validation (both full-precision and quantized), it is assumed that these output directories with the fine-tuned checkpoints are aranged as follows (you can also use a subset of GLUE tasks):

/path/to/saved_models/
├── rte/rte_model_dir
│   ├── out
│   │   ├── config.json  # Huggingface model config
│   │   ├── pytorch_model.bin  # PyTorch model checkpoint
│   │   ├── tokenizer_config.json  # Huggingface tokenizer config
│   │   ├── vocab.txt  # Vocabulary
│   │   ├── (...)
├── cola/cola_model_dir
│   ├── out
│   │   ├── (...)
├── mnli/mnli_model_dir
│   ├── out
│   │   ├── (...)
├── mrpc/mrpc_model_dir
│   ├── out
│   │   ├── (...)
├── qnli/qnli_model_dir
│   ├── out
│   │   ├── (...)
├── qqp/qqp_model_dir
│   ├── out
│   │   ├── (...)
├── sst2/sst2_model_dir
│   ├── out
│   │   ├── (...)
└── stsb/stsb_model_dir
    ├── out
    │   ├── (...)

Note, that you have to create this file structure manually.

The model can then be validated as follows:

python main.py validate-baseline --eval-batch-size 32 --seed 1000 --model-name bert_base_uncased \
    --model-path /path/to/saved_models/ --task rte

You can also validate multiple or all checkpoints by specifying --task --task [...] or --task all, respectively.

B. Post-training quantization (PTQ)

1) Standard (naïve) W8A8 per-tensor PTQ / base run command for all PTQ experiments

python main.py validate-quantized --act-quant --weight-quant --no-pad-to-max-length \
	--est-ranges-no-pad --eval-batch-size 16 --seed 1000 --model-path /path/to/saved_models/ \
	--task rte --n-bits 8 --n-bits-act 8 --qmethod symmetric_uniform \
	--qmethod-act asymmetric_uniform --weight-quant-method MSE --weight-opt-method golden_section \
	--act-quant-method current_minmax --est-ranges-batch-size 1 --num-est-batches 1 \
	--quant-setup all

Note that the range estimation settings are slightly different for each task.

2) Mixed precision W8A{8,16} PTQ

Specify --quant-dict "{'y': 16, 'h': 16, 'x': 16}":

  • 'x': 16 will set FFN's input to 16-bit
  • 'h': 16 will set FFN's output to 16-bit
  • 'y': 16 will set FFN's residual sum to 16-bit

For STS-B regression task, you will need to specify --quant-dict "{'y': 16, 'h': 16, 'x': 16, 'P': 16, 'C': 16}" and --quant-setup MSE_logits, which will also quantize pooler and the final classifier to 16-bit and use MSE estimator for the output.

3) Per-embedding and per-embedding-group (PEG) activation quantization

  • --per-embd -- Per-embedding quantization for all activations
  • --per-groups [N_GROUPS] -- PEG quantization for all activations, no permutation
  • --per-groups [N_GROUPS] --per-groups-permute -- PEG quantization for all activations, apply range-based permutation (separate for each quantizer)
  • --quant-dict "{'y': 'ng6', 'h': 'ng6', 'x': 'ng6'}" -- PEG quantization using 6 groups for FFN's input, output and residual sum, no permutation
  • --quant-dict "{'y': 'ngp6', 'h': 'ngp6', 'x': 'ngp6'}" --per-groups-permute-shared-h -- PEG quantization using 6 groups for FFN's input, output and residual sum, apply range-based permutation (shared between tensors in the same layer)

4) W4A32 PTQ with AdaRound

python main.py validate-quantized --weight-quant --no-act-quant --no-pad-to-max-length \
	--est-ranges-no-pad --eval-batch-size 16 --seed 1000 --model-path /path/to/saved_models/ \
	--task rte --qmethod symmetric_uniform --qmethod-act asymmetric_uniform --n-bits 4 \
	--weight-quant-method MSE --weight-opt-method grid --num-candidates 100 --quant-setup all \
	--adaround all --adaround-num-samples 1024 --adaround-init range_estimator \
	--adaround-mode learned_hard_sigmoid --adaround-asym --adaround-iters 10000 \
	--adaround-act-quant no_act_quant

C. Quantization-aware training (QAT)

Base run command for QAT experiments (using W4A8 for example):

python main.py train-quantized --cuda --do-eval --logging-first-step --weight-quant --act-quant \
	--pad-to-max-length --learn-ranges --tqdm --batch-size 8 --seed 1000 \
	--model-name bert_base_uncased --learning-rate 5e-05 --num-epochs 6 --warmup-steps 186 \
	--weight-decay 0.0 --attn-dropout 0.0 --hidden-dropout 0.0 --max-seq-length 128 --n-bits 4 \
	--n-bits-act 8 --qmethod symmetric_uniform --qmethod-act asymmetric_uniform \
	--weight-quant-method MSE --weight-opt-method golden_section --act-quant-method current_minmax \
	--est-ranges-batch-size 16 --num-est-batches 1 --quant-setup all \
	--model-path /path/to/saved_models/rte/out --task rte --output-dir /path/to/qat_output/dir

Note that the settings are slightly different for each task (see Appendix).

To run mixed-precision QAT with 2-bit embeddings and 4-bit weights, add --quant-dict "{'Et': 2}".

Owner
An initiative of Qualcomm Technologies, Inc.
Repo for code associated with Modeling the Mitral Valve.

Project Title Mitral Valve Getting Started Repo for code associated with Modeling the Mitral Valve. See https://arxiv.org/abs/1902.00018 for preprint,

Alex Kaiser 1 May 17, 2022
Code for models used in Bashiri et al., "A Flow-based latent state generative model of neural population responses to natural images".

A Flow-based latent state generative model of neural population responses to natural images Code for "A Flow-based latent state generative model of ne

Sinz Lab 5 Aug 26, 2022
The Malware Open-source Threat Intelligence Family dataset contains 3,095 disarmed PE malware samples from 454 families

MOTIF Dataset The Malware Open-source Threat Intelligence Family (MOTIF) dataset contains 3,095 disarmed PE malware samples from 454 families, labeled

Booz Allen Hamilton 112 Dec 13, 2022
PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021]

piglet PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021] This repo contains code and data for PIGLeT. If you like

Rowan Zellers 51 Oct 08, 2022
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Collie do

ShopRunner 96 Dec 29, 2022
AI-based, context-driven network device ranking

Batea A batea is a large shallow pan of wood or iron traditionally used by gold prospectors for washing sand and gravel to recover gold nuggets. Batea

Secureworks Taegis VDR 269 Nov 26, 2022
REGTR: End-to-end Point Cloud Correspondences with Transformers

REGTR: End-to-end Point Cloud Correspondences with Transformers This repository contains the source code for REGTR. REGTR utilizes multiple transforme

Zi Jian Yew 108 Dec 17, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces"

Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces" This repo contains the implementation of GEBO algorithm.

Jaeyeon Ahn 2 Mar 22, 2022
WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking

WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking [Paper Link] Abstract In this work, we contribute a new million-scale Un

25 Jan 01, 2023
An introduction to satellite image analysis using Python + OpenCV and JavaScript + Google Earth Engine

A Gentle Introduction to Satellite Image Processing Welcome to this introductory course on Satellite Image Analysis! Satellite imagery has become a pr

Edward Oughton 32 Jan 03, 2023
A full pipeline AutoML tool for tabular data

HyperGBM Doc | 中文 We Are Hiring! Dear folks,we are offering challenging opportunities located in Beijing for both professionals and students who are k

DataCanvas 240 Jan 03, 2023
QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper)

QAHOI QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper) Requirements PyTorch = 1.5.1 torchvision = 0.6.1 pip install -r requ

38 Dec 29, 2022
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
DGCNN - Dynamic Graph CNN for Learning on Point Clouds

DGCNN is the author's re-implementation of Dynamic Graph CNN, which achieves state-of-the-art performance on point-cloud-related high-level tasks including category classification, semantic segmentat

Wang, Yue 1.3k Dec 26, 2022
This GitHub repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.'

About Repository This repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.' About Code

Arun Verma 1 Nov 09, 2021
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Segmentation Transformer Implementation of Segmentation Transformer in PyTorch, a new model to achieve SOTA in semantic segmentation while using trans

Abhay Gupta 161 Dec 08, 2022
22 Oct 14, 2022
Code of paper "CDFI: Compression-Driven Network Design for Frame Interpolation", CVPR 2021

CDFI (Compression-Driven-Frame-Interpolation) [Paper] (Coming soon...) | [arXiv] Tianyu Ding*, Luming Liang*, Zhihui Zhu, Ilya Zharkov IEEE Conference

Tianyu Ding 95 Dec 04, 2022