Intelligent Video Analytics toolkit based on different inference backends.

Related tags

Deep LearningOpenIVA
Overview

English | 中文

OpenIVA

alt OpenIVA

OpenIVA is an end-to-end intelligent video analytics development toolkit based on different inference backends, designed to help individual users and start-ups quickly launch their own video AI services.
OpenIVA implements varied mainstream facial recognition, object detection, segmentation and landmark detection algorithms. And it provides an efficient and lightweight service deployment framework with a modular design. Users only need to replace the algorithm model used for their own tasks.

Features

  1. Common mainstream algorithms
  • Provides latest fast accurate pre-trained models for facial recognition, object detection, segmentation and landmark detection tasks
  1. Multi inference backends
  • Supports TensorlayerX/ TensorRT/ onnxruntime
  1. High performance
  • Achieves high performance on CPU/GPU/Ascend platforms, achieve inference speed above 3000it/s
  1. Asynchronous & multithreading
  • Use multithreading and queue to achieve high device utilization for inference and pre/post-processing
  1. Lightweight service
  • Use Flask for lightweight intelligent application services
  1. Modular design
  • You can quickly start your intelligent analysis service, only need to replace the AI models
  1. GUI visualization tools
  • Start analysis tasks only by clicking buttons, and show visualized results in GUI windows, suitable for multiple tasks

alt Sample Face landmark alt Sample Face recognition alt Sample YOLOX

Performance benchmark

Testing environments

  • i5-10400 6c12t
  • RTX3060
  • Ubuntu18.04
  • CUDA 11.1
  • TensorRT-7.2.3.4
  • onnxruntime with EPs:
    • CPU(Default)
    • CUDA(Manually Compiled)
    • OpenVINO(Manually Compiled)
    • TensorRT(Manually Compiled)

Performance

Facial recognition

Run
python test_landmark.py
batchsize=8, top_k=68, 67 faces in the image

  • Face detection
    Model face_detector_640_dy_sim

    onnxruntime EPs FPS faces per sec
    CPU 32 2075
    OpenVINO 81 5374
    CUDA 105 7074
    TensorRT(FP32) 124 7948
    TensorRT(FP16) 128 8527
  • Face landmark
    Model landmarks_68_pfld_dy_sim

    onnxruntime EPs faces per sec
    CPU 69
    OpenVINO 890
    CUDA 2061
    TensorRT(FP32) 2639
    TensorRT(FP16) 3131

Run
python test_face.py
batchsize=8

  • Face embedding
    Model arc_mbv2_ccrop_sim

    onnxruntime EPs faces per sec
    CPU 212
    OpenVINO 865
    CUDA 1790
    TensorRT(FP32) 2132
    TensorRT(FP16) 2812

Objects detection

Run
python test_yolo.py
batchsize=8 , 4 objects in the image

  • YOLOX objects detect
    Model yolox_s(ms_coco)

    onnxruntime EPs FPS Objects per sec
    CPU 9.3 37.2
    OpenVINO 13 52
    CUDA 77 307
    TensorRT(FP32) 95 380
    TensorRT(FP16) 128 512

    Model yolox_m(ms_coco)

    onnxruntime EPs FPS Objects per sec
    CPU 4 16
    OpenVINO 5.5 22
    CUDA 46.8 187
    TensorRT(FP32) 64 259
    TensorRT(FP16) 119 478

    Model yolox_nano(ms_coco)

    onnxruntime EPs FPS Objects per sec
    CPU 47 188
    OpenVINO 80 320
    CUDA 210 842
    TensorRT(FP32) 244 977
    TensorRT(FP16) 269 1079

    Model yolox_tiny(ms_coco)

    onnxruntime EPs FPS Objects per sec
    CPU 33 133
    OpenVINO 43 175
    CUDA 209 839
    TensorRT(FP32) 248 995
    TensorRT(FP16) 327 1310

Progress

  • Multi inference backends

    • onnxruntime
      • CPU
      • CUDA
      • TensorRT
      • OpenVINO
    • TensorlayerX
    • TensorRT
  • Asynchronous & multithreading

    • Data generate threads
    • AI compute threads
    • Multifunctional threads
    • Collecting threads
  • Lightweight service

    • prototype
  • GUI visualization tools

  • Common algorithms

    • Facial recognition

      • Face detection

      • Face landmark

      • Face embedding

    • Object detection

      • YOLOX
    • Semantic/Instance segmentation

    • Scene classification

      • prototype
  • Data I/O

    • Video decoding
      • OpenCV decoding
        • Local video files
        • Network stream videos
    • Data management
      • Facial identity database
      • Data serialization
Owner
Quantum Liu
RAmen
Quantum Liu
Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized C

Sam Bond-Taylor 139 Jan 04, 2023
[NIPS 2021] UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration.

UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration This repository is the official PyTorch implementation of UOT

6 Jun 29, 2022
Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Support Vector Machine".

On the Equivalence between Neural Network and Support Vector Machine Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Suppo

Leslie 8 Oct 25, 2022
Lux AI environment interface for RLlib multi-agents

Lux AI interface to RLlib MultiAgentsEnv For Lux AI Season 1 Kaggle competition. LuxAI repo RLlib-multiagents docs Kaggle environments repo Please let

Jaime 12 Nov 07, 2022
Learning to Stylize Novel Views

Learning to Stylize Novel Views [Project] [Paper] Contact: Hsin-Ping Huang ([ema

34 Nov 27, 2022
PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS.

PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS. With Live, you can build a working mobile app ML demo in minutes.

559 Jan 01, 2023
시각 장애인을 위한 스마트 지팡이에 활용될 딥러닝 모델 (DL Model Repo)

SmartCane-DL-Model Smart Cane using semantic segmentation 참고한 Github repositoy 🔗 https://github.com/JunHyeok96/Road-Segmentation.git 데이터셋 🔗 https://

반드시 졸업한다 (Team Just Graduate) 4 Dec 03, 2021
A scikit-learn-compatible module for estimating prediction intervals.

MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals (or prediction sets) using your favourit

588 Jan 04, 2023
Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation

SUO-SLAM This repository hosts the code for our CVPR 2022 paper "Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation". ArXiv li

Robot Perception & Navigation Group (RPNG) 97 Jan 03, 2023
Open source implementation of AceNAS: Learning to Rank Ace Neural Architectures with Weak Supervision of Weight Sharing

AceNAS This repo is the experiment code of AceNAS, and is not considered as an official release. We are working on integrating AceNAS as a built-in st

Yuge Zhang 6 Sep 07, 2022
Defending graph neural networks against adversarial attacks (NeurIPS 2020)

GNNGuard: Defending Graph Neural Networks against Adversarial Attacks Authors: Xiang Zhang ( Zitnik Lab @ Harvard 44 Dec 07, 2022

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

2 Jul 25, 2022
Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis Fast & Low Memory requirement & Enhanced implementation of Local Context F

YangHeng 567 Jan 07, 2023
Unofficial PyTorch implementation of the Adaptive Convolution architecture for image style transfer

AdaConv Unofficial PyTorch implementation of the Adaptive Convolution architecture for image style transfer from "Adaptive Convolutions for Structure-

65 Dec 22, 2022
Pytorch implementation of our paper under review — Lottery Jackpots Exist in Pre-trained Models

Lottery Jackpots Exist in Pre-trained Models (Paper Link) Requirements Python = 3.7.4 Pytorch = 1.6.1 Torchvision = 0.4.1 Reproduce the Experiment

Yuxin Zhang 27 Jun 28, 2022
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 08, 2023
OneFlow is a performance-centered and open-source deep learning framework.

OneFlow OneFlow is a performance-centered and open-source deep learning framework. Latest News Version 0.5.0 is out! First class support for eager exe

OneFlow 4.2k Jan 07, 2023
This repository contains the official implementation code of the paper Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis

This repository contains the official implementation code of the paper Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis, accepted at ACMMM 2021.

Ziqi Yuan 10 Sep 30, 2022
PyTorch Implementation for "ForkGAN with SIngle Rainy NIght Images: Leveraging the RumiGAN to See into the Rainy Night"

ForkGAN with Single Rainy Night Images: Leveraging the RumiGAN to See into the Rainy Night By Seri Lee, Department of Engineering, Seoul National Univ

Seri Lee 52 Oct 12, 2022
Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation

STCN Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [a

Rex Cheng 456 Dec 12, 2022