Dogs classification with Deep Metric Learning using some popular losses

Overview

Tsinghua Dogs classification with
Deep Metric Learning

1. Introduction

Tsinghua Dogs dataset

Tsinghua Dogs is a fine-grained classification dataset for dogs, over 65% of whose images are collected from people's real life. Each dog breed in the dataset contains at least 200 images and a maximum of 7,449 images. For more info, see dataset's homepage.

Following is the brief information about the dataset:

  • Number of categories: 130
  • Number of training images: 65228
  • Number of validating images: 5200

Variation in Tsinghua Dogs dataset. (a) Great Danes exhibit large variations in appearance, while (b) Norwich terriers and (c) Australian terriers are quite similar to each other. (Source)

Deep metric learning

Deep metric learning (DML) aims to measure the similarity among samples by training a deep neural network and a distance metric such as Euclidean distance or Cosine distance. For fine-grained data, in which the intra-class variances are larger than inter-class variances, DML proves to be useful in classification tasks.

Goal

In this projects, I use deep metric learning to classify dog images in Tsinghua Dogs dataset. Those loss functions are implemented:

  1. Triplet loss
  2. Proxy-NCA loss
  3. Proxy-anchor loss: In progress
  4. Soft-triple loss: In progress

I also evaluate models' performance on some common metrics:

  1. Precision at k ([email protected])
  2. Mean average precision (MAP)
  3. Top-k accuracy
  4. Normalized mutual information (NMI)


2. Benchmarks

  • Architecture: Resnet-50 for feature extractions.
  • Embedding size: 128.
  • Batch size: 48.
  • Number of epochs: 100.
  • Online hard negatives mining.
  • Augmentations:
    • Random horizontal flip.
    • Random brightness, contrast and saturation.
    • Random affine with rotation, scale and translation.
MAP [email protected] [email protected] [email protected] Top-5 NMI Download
Triplet loss 73.85% 74.66% 73.90 73.00% 93.76% 0.82
Proxy-NCA loss 89.10% 90.26% 89.28% 87.76% 99.39% 0.98
Proxy-anchor loss
Soft-triple loss


3. Visualization

Proxy-NCA loss

Confusion matrix on validation set

T-SNE on validation set

Similarity matrix of some images in validation set

  • Each cell represent the L2 distance between 2 images.
  • The closer distance to 0 (blue), the more similar.
  • The larger distance (green), the more dissimilar.

Triplet loss

Confusion matrix on validation set

T-SNE on validation set

Similarity matrix of some images in validation set

  • Each cell represent the L2 distance between 2 images.
  • The closer distance to 0 (blue), the more similar.
  • The larger distance (green), the more dissimilar.



4. Train

4.1 Install dependencies

# Create conda environment
conda create --name dml python=3.7 pip
conda activate dml

# Install pytorch and torchvision
conda install -n dml pytorch torchvision cudatoolkit=10.2 -c pytorch

# Install faiss for indexing and calulcating accuracy
# https://github.com/facebookresearch/faiss
conda install -n dml faiss-gpu cudatoolkit=10.2 -c pytorch

# Install other dependencies
pip install opencv-python tensorboard torch-summary torch_optimizer scikit-learn matplotlib seaborn requests ipdb flake8 pyyaml

4.2 Prepare Tsinghua Dogs dataset

PYTHONPATH=./ python src/scripts/prepare_TsinghuaDogs.py --output_dir data/

Directory data should be like this:

data/
└── TsinghuaDogs
    ├── High-Annotations
    ├── high-resolution
    ├── TrainAndValList
    ├── train
    │   ├── 561-n000127-miniature_pinscher
    │   │   ├── n107028.jpg
    │   │   ├── n107031.jpg
    │   │   ├── ...
    │   │   └── n107218.jp
    │   ├── ...
    │   ├── 806-n000129-papillon
    │   │   ├── n107440.jpg
    │   │   ├── n107451.jpg
    │   │   ├── ...
    │   │   └── n108042.jpg
    └── val
        ├── 561-n000127-miniature_pinscher
        │   ├── n161176.jpg
        │   ├── n161177.jpg
        │   ├── ...
        │   └── n161702.jpe
        ├── ...
        └── 806-n000129-papillon
            ├── n169982.jpg
            ├── n170022.jpg
            ├── ...
            └── n170736.jpeg

4.3 Train model

  • Train with proxy-nca loss
CUDA_VISIBLE_DEVICES=0 PYTHONPATH=./ python src/main.py --train_dir data/TsinghuaDogs/train --test_dir data/TsinghuaDogs/val --loss proxy_nca --config src/configs/proxy_nca_loss.yaml --checkpoint_root_dir src/checkpoints/proxynca-resnet50
  • Train with triplet loss
CUDA_VISIBLE_DEVICES=0 PYTHONPATH=./ python src/main.py --train_dir data/TsinghuaDogs/train --test_dir data/TsinghuaDogs/val --loss tripletloss --config src/configs/triplet_loss.yaml --checkpoint_root_dir src/checkpoints/tripletloss-resnet50

Run PYTHONPATH=./ python src/main.py --help for more detail about arguments.

If you want to train on 2 gpus, replace CUDA_VISIBLE_DEVICES=0 with CUDA_VISIBLE_DEVICES=0,1 and so on.

If you encounter out of memory issues, try reducing classes_per_batch and samples_per_class in src/configs/triplet_loss.yaml or batch_size in src/configs/your-loss.yaml



5. Evaluate

To evaluate, directory data should be structured like this:

data/
└── TsinghuaDogs
    ├── train
    │   ├── 561-n000127-miniature_pinscher
    │   │   ├── n107028.jpg
    │   │   ├── n107031.jpg
    │   │   ├── ...
    │   │   └── n107218.jp
    │   ├── ...
    │   ├── 806-n000129-papillon
    │   │   ├── n107440.jpg
    │   │   ├── n107451.jpg
    │   │   ├── ...
    │   │   └── n108042.jpg
    └── val
        ├── 561-n000127-miniature_pinscher
        │   ├── n161176.jpg
        │   ├── n161177.jpg
        │   ├── ...
        │   └── n161702.jpe
        ├── ...
        └── 806-n000129-papillon
            ├── n169982.jpg
            ├── n170022.jpg
            ├── ...
            └── n170736.jpeg

Plot confusion matrix

PYTHONPATH=./ python src/scripts/visualize_confusion_matrix.py --test_images_dir data/TshinghuaDogs/val/ --reference_images_dir data/TshinghuaDogs/train -c src/checkpoints/proxynca-resnet50.pth

Plot T-SNE

PYTHONPATH=./ python src/scripts/visualize_tsne.py --images_dir data/TshinghuaDogs/val/ -c src/checkpoints/proxynca-resnet50.pth

Plot similarity matrix

PYTHONPATH=./ python src/scripts/visualize_similarity.py  --images_dir data/TshinghuaDogs/val/ -c src/checkpoints/proxynca-resnet50.pth


6. Developement

.
├── __init__.py
├── README.md
├── src
│   ├── main.py  # Entry point for training.
│   ├── checkpoints  # Directory to save model's weights while training
│   ├── configs  # Configurations for each loss function
│   │   ├── proxy_nca_loss.yaml
│   │   └── triplet_loss.yaml
│   ├── dataset.py
│   ├── evaluate.py  # Calculate mean average precision, accuracy and NMI score
│   ├── __init__.py
│   ├── logs
│   ├── losses
│   │   ├── __init__.py
│   │   ├── proxy_nca_loss.py
│   │   └── triplet_margin_loss.py
│   ├── models  # Feature extraction models
│   │   ├── __init__.py
│   │   └── resnet.py
│   ├── samplers
│   │   ├── __init__.py
│   │   └── pk_sampler.py  # Sample triplets in each batch for triplet loss
│   ├── scripts
│   │   ├── __init__.py
│   │   ├── prepare_TsinghuaDogs.py  # download and prepare dataset for training and validating
│   │   ├── visualize_confusion_matrix.py
│   │   ├── visualize_similarity.py
│   │   └── visualize_tsne.py
│   ├── trainer.py  # Helper functions for training
│   └── utils.py  # Some utility functions
└── static
    ├── proxynca-resnet50
    │   ├── confusion_matrix.jpg
    │   ├── similarity.jpg
    │   ├── tsne_images.jpg
    │   └── tsne_points.jpg
    └── tripletloss-resnet50
        ├── confusion_matrix.jpg
        ├── similarity.jpg
        ├── tsne_images.jpg
        └── tsne_points.jpg

7. Acknowledgement

@article{Zou2020ThuDogs,
    title={A new dataset of dog breed images and a benchmark for fine-grained classification},
    author={Zou, Ding-Nan and Zhang, Song-Hai and Mu, Tai-Jiang and Zhang, Min},
    journal={Computational Visual Media},
    year={2020},
    url={https://doi.org/10.1007/s41095-020-0184-6}
}
Owner
QuocThangNguyen
Computer Vision Researcher
QuocThangNguyen
Code of paper: "DropAttack: A Masked Weight Adversarial Training Method to Improve Generalization of Neural Networks"

DropAttack: A Masked Weight Adversarial Training Method to Improve Generalization of Neural Networks Abstract: Adversarial training has been proven to

倪仕文 (Shiwen Ni) 58 Nov 10, 2022
PyTorch Code of "Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spatiotemporal Dynamics"

Memory In Memory Networks It is based on the paper Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spati

Yang Li 12 May 30, 2022
Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021)

Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021) Alexey Nekrasov*, Jonas Schult*, Or Litany, Bastian Leibe, Francis Engelmann Mix3D is

Alexey Nekrasov 189 Dec 26, 2022
Bib-parser - Convenient script to parse .bib files with the ACM Digital Library like metadata

Bib Parser Convenient script to parse .bib files with the ACM Digital Library li

Mehtab Iqbal (Shahan) 1 Jan 26, 2022
Deep Q-Learning Network in pytorch (not actively maintained)

pytoch-dqn This project is pytorch implementation of Human-level control through deep reinforcement learning and I also plan to implement the followin

Hung-Tu Chen 342 Jan 01, 2023
Transport Mode detection - can detect the mode of transport with the help of features such as acceeration,jerk etc

title emoji colorFrom colorTo sdk app_file pinned Transport_Mode_Detector 🚀 purple yellow gradio app.py false Configuration title: string Display tit

Nishant Rajadhyaksha 3 Jan 16, 2022
Simple reference implementation of GraphSAGE.

Reference PyTorch GraphSAGE Implementation Author: William L. Hamilton Basic reference PyTorch implementation of GraphSAGE. This reference implementat

William L Hamilton 861 Jan 06, 2023
Bayesian Optimization using GPflow

Note: This package is for use with GPFlow 1. For Bayesian optimization using GPFlow 2 please see Trieste, a joint effort with Secondmind. GPflowOpt GP

GPflow 257 Dec 26, 2022
ARAE-Tensorflow for Discrete Sequences (Adversarially Regularized Autoencoder)

ARAE Tensorflow Code Code for the paper Adversarially Regularized Autoencoders for Generating Discrete Structures by Zhao, Kim, Zhang, Rush and LeCun

19 Nov 12, 2021
High performance distributed framework for training deep learning recommendation models based on PyTorch.

High performance distributed framework for training deep learning recommendation models based on PyTorch.

340 Dec 30, 2022
GoodNews Everyone! Context driven entity aware captioning for news images

This is the code for a CVPR 2019 paper, called GoodNews Everyone! Context driven entity aware captioning for news images. Enjoy! Model preview: Huge T

117 Dec 19, 2022
Code for "Discovering Non-monotonic Autoregressive Orderings with Variational Inference" (paper and code updated from ICLR 2021)

Discovering Non-monotonic Autoregressive Orderings with Variational Inference Description This package contains the source code implementation of the

Xuanlin (Simon) Li 10 Dec 29, 2022
Preparation material for Dropbox interviews

Dropbox-Onsite-Interviews A guide for the Dropbox onsite interview! The Dropbox interview question bank is very small. The bank has been in a Chinese

386 Dec 31, 2022
[NeurIPS'20] Self-supervised Co-Training for Video Representation Learning. Tengda Han, Weidi Xie, Andrew Zisserman.

CoCLR: Self-supervised Co-Training for Video Representation Learning This repository contains the implementation of: InfoNCE (MoCo on videos) UberNCE

Tengda Han 271 Jan 02, 2023
aka "Bayesian Methods for Hackers": An introduction to Bayesian methods + probabilistic programming with a computation/understanding-first, mathematics-second point of view. All in pure Python ;)

Bayesian Methods for Hackers Using Python and PyMC The Bayesian method is the natural approach to inference, yet it is hidden from readers behind chap

Cameron Davidson-Pilon 25.1k Jan 02, 2023
Repo for the Tutorials of Day1-Day3 of the Nordic Probabilistic AI School 2021 (https://probabilistic.ai/)

ProbAI 2021 - Probabilistic Programming and Variational Inference Tutorial with Pryo Day 1 (June 14) Slides Notebook: students_PPLs_Intro Notebook: so

PGM-Lab 46 Nov 01, 2022
Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.

Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.

1.7k Jan 08, 2023
Unofficial implementation of the paper: PonderNet: Learning to Ponder in TensorFlow

PonderNet-TensorFlow This is an Unofficial Implementation of the paper: PonderNet: Learning to Ponder in TensorFlow. Official PyTorch Implementation:

1 Oct 23, 2022
Few-Shot Graph Learning for Molecular Property Prediction

Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea

Zhichun Guo 94 Dec 12, 2022
Codes and scripts for "Explainable Semantic Space by Grounding Languageto Vision with Cross-Modal Contrastive Learning"

Visually Grounded Bert Language Model This repository is the official implementation of Explainable Semantic Space by Grounding Language to Vision wit

17 Dec 17, 2022