A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers.

Overview

Dying Light 2 PAKFile Utility

A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers.
This tool aims to make PAKFile (.pak files) modding a breeze for both Dying Light 2 modders and mod makers.
See the roadmap for a better idea of what's to come!
More TBA Soon.

Features

  • Ability to Examine PAKFiles (see size, validity, and any CRC / Header mismatch errors)
  • Ability to Extract PAKFiles into a Folder to Edit
  • Ability to Build a PAKFile from a Folder

Known Bugs / Issues

This is a collective list of known bugs / glitches / issues.

  • None / TBA

Running the Utility

As an Executable / Binary

Step-by-step instructions to running the utility as a standalone executable.

  1. Download the Latest Release from GitHub.
  2. Save it somewhere easy to remember. A mod management folder is recommended.
  3. Right-Click the DL2-PAKFile-Utility.exe File and Select Run as Administrator
  4. Follow the On-Screen Prompts

From Source

Step-by-step instructions to running the utility from source.

  1. Open an Elevated Command Prompt
  2. Make a Virtual Environment and Activate it
  3. pip install -r requirements.txt
  4. python main.py
  5. ???
  6. $$ PROFIT $$

Making Mods

The location of the two default PAKFiles (data0.pak and data1.pak) is \steamapps\common\Dying Light 2\ph\source . Opening these PAKFiles and extracting them allows you to see all of the scripts that run in the game's engine, the C-Engine. To make a mod, extract one of these PAKFiles and then simply find the files inside of the extracted contents that include what you wish to change, modify them how you'd like, delete everything else that wasn't changed, and then build a PAKFile from that folder! To use the mod you've made, build it as dataN.pak where N is the next highest available number in your default PAKFile location (for example, if you only have data0.pak and data1.pak, you'd build a data3.pak). If other users wish to use it and they have a different number of PAKFiles than you, they may simply rename it to be a higher number in the filename.

Theory on Mod Loading Order

As writing a new mod makes use of upping the integer in the dataN.pak filenames, I'm assuming the higher the integer, the higher the order of precedence is. This is perhaps to say, for example, if one mod (data3.pak) gives unlimited stamina and another (data4.pak) removes unlimited stamina, I believe data4.pak's effects would take priority over data3.pak's and would render stamina untouched / not unlimited.

FAQ

Q1: Why does this need to be ran as an administrator?
A1: Some people store their games / mod management folders in weird places that non-elevated applications typically can't access. This is simply insurance on that possibility, making sure any user who stores their files anywhere can use this tool!
Q2: Why not opt for a better compression algorithm?
A2: This application originally used LZMA compression, which works great, but is unfortunately unsupported by C-Engine. It appears the current compression method, the default zip compression method of deflation, is the only functioning method of compressing .pak files.

Roadmap

This is a loose outline of what is in the future for the DL2 PAKFile Utility!

  • Ability to Examine PAKFiles (see size, validity, and any CRC / Header mismatch errors)
  • Ability to Extract PAKFiles into a Folder to Edit
  • Ability to Build a PAKFile from a Folder
  • Search PAKFiles for Specific Contents
  • GUI Integration
  • Intelligently Browse DL2 PAKFile Folder Contents (MOD MANAGER FUNCTIONALITY)
  • Detailed Documentation for both the Application and for Modding DL2
  • Auto-Updating Feature for the Utility that Pulls from GitHub
  • More Modding Tools Built-In

More to be Announced Soon!

You might also like...
CVPR '21: In the light of feature distributions: Moment matching for Neural Style Transfer
CVPR '21: In the light of feature distributions: Moment matching for Neural Style Transfer

In the light of feature distributions: Moment matching for Neural Style Transfer (CVPR 2021) This repository provides code to recreate results present

CondenseNet: Light weighted CNN for mobile devices
CondenseNet: Light weighted CNN for mobile devices

CondenseNets This repository contains the code (in PyTorch) for "CondenseNet: An Efficient DenseNet using Learned Group Convolutions" paper by Gao Hua

A light-weight image labelling tool for Python designed for creating segmentation data sets.
A light-weight image labelling tool for Python designed for creating segmentation data sets.

An image labelling tool for creating segmentation data sets, for Django and Flask.

Official code of
Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network."

R2RNet Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network." Jiang Hai, Zhu Xuan, Ren Yang, Yutong Hao, Fengzhu

LLVIP: A Visible-infrared Paired Dataset for Low-light Vision
LLVIP: A Visible-infrared Paired Dataset for Low-light Vision

LLVIP: A Visible-infrared Paired Dataset for Low-light Vision Project | Arxiv | Abstract It is very challenging for various visual tasks such as image

PyTorch Implementation of
PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"

LFT PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf]. Contributions: We make the first attempt to a

Light-weight network, depth estimation, knowledge distillation, real-time depth estimation, auxiliary data.
Light-weight network, depth estimation, knowledge distillation, real-time depth estimation, auxiliary data.

light-weight-depth-estimation Boosting Light-Weight Depth Estimation Via Knowledge Distillation, https://arxiv.org/abs/2105.06143 Junjie Hu, Chenyou F

Yolo Traffic Light Detection With Python

Yolo-Traffic-Light-Detection This project is based on detecting the Traffic light. Pretained data is used. This application entertained both real time

Implementation of light baking system for ray tracing based on Activision's UberBake

Vulkan Light Bakary MSU Graphics Group Student's Diploma Project Treefonov Andrey [GitHub] [LinkedIn] Project Goal The goal of the project is to imple

Releases(v0.4.6)
  • v0.4.6(Feb 11, 2022)

    v0.4.6 | General Improvements

    This release is just an update to fix some crashing issues (now gives detailed error output and won't close / exit the application) and to address the false-flagging by some anti-virus softwares of this application. It should now give 0 flags on an anti-virus, and should feel a lot smoother in terms of user experience. Also addressed was a minor formatting but when the rebuild feature has been enabled with errors giving a limit of 1-4 when the limit is 1-6 for the main menu selection integer.

    Known Issues

    There are no known issues within this release.

    Upcoming

    Full cross-platform support is planned, and the GUI is a work-in-progress! Big things are coming to this utility soon. Plans for a fully-functional and fully-featured mod loader / manager are in the works.

    Changelog

    This is what is new or different:

    • Better Error and Exception Handling (no more random crashes)
    • Fixed Integer Bounds Formatting
    • Cleanly-Built Pyinstaller Bootloader to Fix False AV Flags
    Source code(tar.gz)
    Source code(zip)
    DL2-PAKFile-Utility.exe(7.29 MB)
  • v0.3.9(Feb 10, 2022)

    v0.3.9 | Hotfix and Improvements

    This is a hotfix. It is intended to fix a bug with built PAKFiles not loading properly into Dying Light 2 / C-Engine. The issue was with LZMA vs Deflation compression methods. Additionally, an option to rebuild the last built .pak has been added for rapid development as you tweak the mods you're making. There won't be much in terms of information in this release, as more work is still being done for future updates. This is simply a hotfix release coupled with a feature request.

    Known Issues

    There is one main issue to be aware of for this release:
    False-Flagging for Antiviruses

    • See this link for an in-depth explanation.
    • TL;DR - a lot of people use pyinstaller, the tool used to freeze the executable, for malicious purposes. Thusly, applications built with the signature of pyinstaller may also be flagged as a virus simply by association of the method used to compile the executable.
    • This will be fixed soon once I've rewritten the pyinstaller bootloader, or possibly switched to nuitka.
    • If the issue annoys you or gives you problems, simply create an antivirus / firewall exception for the app, or build it from source yourself.

    Changelog

    This is what is new or different:

    • Application-Built PAKs Now Work Properly with Dying Light 2 / C-Engine
    • Ability to Rebuild Last PAK from Main Menu
    • Changed Icon Color to Neon Cyan for Visibility (Contrast to Dying Light 2 Game Icon)
    Source code(tar.gz)
    Source code(zip)
    DL2-PAKFile-Utility.exe(7.29 MB)
  • v0.0.1(Feb 9, 2022)

    v0.0.1 | Initial Release

    This is an initial release. It is being released as a "beta" because it's more in a beta state and not in an ideal "release" state currently.
    By no means is it complete and / or finished. It is still lacking in a lot of ways that I wish to improve upon in the near future (see the roadmap).
    Make sure to read the instructions on how to run it before getting upset that it's "immediately closing".
    There are bound to be some bugs and errors, and I implore you to report them in this repository's issue tracker.

    Features

    With all of that being said, here is what you can expect to be working as of this release:

    • Ability to Examine PAKFiles (see size, validity, and any CRC / Header mismatch errors)
    • Ability to Extract PAKFiles into a Folder to Edit
    • Ability to Build a PAKFile from a Folder
    • Incredibly Efficient Mod Builder with 79% (21% of Original Size) LZMA Compression on the size of the mods!
    Source code(tar.gz)
    Source code(zip)
    DL2-PAKFile-Utility.exe(7.55 MB)
Owner
RHQ Online
RHQ Online.
RHQ Online
Official repository of the paper Privacy-friendly Synthetic Data for the Development of Face Morphing Attack Detectors

SMDD-Synthetic-Face-Morphing-Attack-Detection-Development-dataset Official repository of the paper Privacy-friendly Synthetic Data for the Development

10 Dec 12, 2022
Optimizaciones incrementales al problema N-Body con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámbito de HPC.

Python HPC Optimizaciones incrementales de N-Body (all-pairs) con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámb

Andrés Milla 12 Aug 04, 2022
9th place solution in "Santa 2020 - The Candy Cane Contest"

Santa 2020 - The Candy Cane Contest My solution in this Kaggle competition "Santa 2020 - The Candy Cane Contest", 9th place. Basic Strategy In this co

toshi_k 22 Nov 26, 2021
Neural-fractal - Create Fractals Using Complex-Valued Neural Networks!

Neural Fractal Create Fractals Using Complex-Valued Neural Networks! Home Page Features Define Dynamical Systems Using Complex-Valued Neural Networks

Amirabbas Asadi 10 Dec 17, 2022
Fashion Landmark Estimation with HRNet

HRNet for Fashion Landmark Estimation (Modified from deep-high-resolution-net.pytorch) Introduction This code applies the HRNet (Deep High-Resolution

SVIP Lab 91 Dec 26, 2022
The world's simplest facial recognition api for Python and the command line

Face Recognition You can also read a translated version of this file in Chinese 简体中文版 or in Korean 한국어 or in Japanese 日本語. Recognize and manipulate fa

Adam Geitgey 46.9k Jan 03, 2023
PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon.

Hand Mesh Reconstruction Introduction This repo is the PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon. Update 2021-1

Xingyu Chen 236 Dec 29, 2022
Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"

Code for paper "Context-self contrastive pretraining for crop type semantic segmentation" Setting up a python environment Follow the instruction in ht

Michael Tarasiou 11 Oct 09, 2022
Sign Language is detected in realtime using video sequences. Our approach involves MediaPipe Holistic for keypoints extraction and LSTM Model for prediction.

RealTime Sign Language Detection using Action Recognition Approach Real-Time Sign Language is commonly predicted using models whose architecture consi

Rishikesh S 15 Aug 20, 2022
My tensorflow implementation of "A neural conversational model", a Deep learning based chatbot

Deep Q&A Table of Contents Presentation Installation Running Chatbot Web interface Results Pretrained model Improvements Upgrade Presentation This wor

Conchylicultor 2.9k Dec 28, 2022
Implementation of UNet on the Joey ML framework

Independent Research Project - Code Joey can be cloned from here https://github.com/devitocodes/joey/. Devito and other dependencies such as PyTorch a

Navjot Kukreja 1 Oct 21, 2021
Interactive Visualization to empower domain experts to align ML model behaviors with their knowledge.

An interactive visualization system designed to helps domain experts responsibly edit Generalized Additive Models (GAMs). For more information, check

InterpretML 83 Jan 04, 2023
Based on Stockfish neural network(similar to LcZero)

MarcoEngine Marco Engine - interesnaya neyronnaya shakhmatnaya set', kotoraya ispol'zuyet metod samoobucheniya(dostizheniye khoroshoy igy putem proboy

Marcus Kemaul 4 Mar 12, 2022
Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators.

Jittor: a Just-in-time(JIT) deep learning framework Quickstart | Install | Tutorial | Chinese Jittor is a high-performance deep learning framework bas

2.7k Jan 03, 2023
Spectral Temporal Graph Neural Network (StemGNN in short) for Multivariate Time-series Forecasting

Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting This repository is the official implementation of Spectral Temporal Gr

Microsoft 306 Dec 29, 2022
OpenMMLab Detection Toolbox and Benchmark

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

OpenMMLab 22.5k Jan 05, 2023
OpenMMLab Image Classification Toolbox and Benchmark

Introduction English | 简体中文 MMClassification is an open source image classification toolbox based on PyTorch. It is a part of the OpenMMLab project. D

OpenMMLab 1.8k Jan 03, 2023
Simple image captioning model - CLIP prefix captioning.

CLIP prefix captioning. Inference Notebook: 🥳 New: 🥳 Our technical papar is finally out! Official implementation for the paper "ClipCap: CLIP Prefix

688 Jan 04, 2023
PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

Dynamic Data Augmentation with Gating Networks This is an official PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

九州大学 ヒューマンインタフェース研究室 3 Oct 26, 2022
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

AI Secure 57 Dec 15, 2022