[ICLR 2021] "CPT: Efficient Deep Neural Network Training via Cyclic Precision" by Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin

Overview

CPT: Efficient Deep Neural Network Training via Cyclic Precision

Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin

Accepted at ICLR 2021 (Spotlight) [Paper Link].

Overview

Low-precision deep neural network (DNN) training has gained tremendous attention as reducing precision is one of the most effective knobs for boosting DNNs’ training time/energy efficiency. In this paper, we attempt to explore low-precision training from a new perspective as inspired by recent findings in understanding DNN training: we conjecture that DNNs’ precision might have a similar effect as the learning rate during DNN training, and advocate dynamic precision along the training trajectory for further boosting the time/energy efficiency of DNN training. Specifically, we propose Cyclic Precision Training (CPT) to cyclically vary the precision between two boundary values to balance the coarse-grained exploration of low precision and fine-grained optimization of high precision. Through experiments and visualization we show that CPT helps to (1) converge to a wider minima with a lower generalization error and (2) reduce training variance, which opens up a new design knob for simultaneously improving the optimization and efficiency of DNN training.

Experimental Results

We evaluate CPT on eleven models & five datasets (i.e., ResNet-38/74/110/152/164/MobileNetV2 on CIFAR-10/100, ResNet-18/34/50 on ImageNet, Transformer on WikiText-103, LSTM on PTB). Please refer to our paper for more results.

Results on CIFAR-100

  • Test accuracy vs. training computational cost

  • Loss landscape visualization

Results on ImageNet

  • Accuracy - training efficiency trade-off

  • Boosting optimality

Results on WikiText-103 and PTB

Code Usage

cpt_cifar and cpt_imagenet are the codes customized for CIFAR-10/100 and ImageNet, respectively, with a similar code structure.

Prerequisites

See env.yml for the complete conda environment. Create a new conda environment:

conda env create -f env.yml
conda activate pytorch

Training on CIFAR-10/100 with CPT

In addition to the commonly considered args, e.g., the target network, dataset, and data path via --arch, --dataset, and --datadir, respectively, you also need to: (1) enable cyclic precision training via --is_cyclic_precision; (2) specify the precision bounds for both forward (weights and activations) and backward (gradients and errors) with --cyclic_num_bits_schedule and --cyclic_num_grad_bits_schedule, respectively (note that in CPT, we adopt a constant precision during backward for more stable training process as analyzed in our appendix); (3) specify the number of cyclic periods via --num_cyclic_period which can be set as 32 in all experiments and more ablation studies can be found in Sec. 4.3 of our paper.

  • Example: Training ResNet-74 on CIFAR-100 with CPT (3~8-bit forward, 8-bit backward, and a cyclic periods of 32).
cd cpt_cifar
python train.py --save_folder ./logs --arch cifar100_resnet_74 --workers 4 --dataset cifar100 --datadir path-to-cifar100 --is_cyclic_precision --cyclic_num_bits_schedule 3 8 --cyclic_num_grad_bits_schedule 8 8 --num_cyclic_period 32

We also integrate SWA in our code although it is not used in the reported results of our paper.

Training on ImageNet with CPT

The args for ImageNet experiments are similar with the ones on CIFAR-10/100.

  • Example: Training ResNet-34 on ImageNet with CPT (3~8-bit forward, 8-bit backward, and a cyclic periods of 32).
cd cpt_imagenet
python train.py --save_folder ./logs --arch resnet34 --warm_up --datadir PATH_TO_IMAGENET --is_cyclic_precision --cyclic_num_bits_schedule 3 8 --cyclic_num_grad_bits_schedule 8 8 --num_cyclic_period 32 --automatic_resume

Citation

@article{fu2021cpt,
  title={CPT: Efficient Deep Neural Network Training via Cyclic Precision},
  author={Fu, Yonggan and Guo, Han and Li, Meng and Yang, Xin and Ding, Yining and Chandra, Vikas and Lin, Yingyan},
  journal={arXiv preprint arXiv:2101.09868},
  year={2021}
}

Our Related Work

Please also check our work on how to fractionally squeeze out more training cost savings from the most redundant bit level, progressively along the training trajectory and dynamically per input:

Yonggan Fu, Haoran You, Yang Zhao, Yue Wang, Chaojian Li, Kailash Gopalakrishnan, Zhangyang Wang, Yingyan Lin. "FracTrain: Fractionally Squeezing Bit Savings Both Temporally and Spatially for Efficient DNN Training". NeurIPS, 2020. [Paper Link] [Code]

Owner
Efficient and Intelligent Computing Lab
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
Introduction to CPM

CPM CPM is an open-source program on large-scale pre-trained models, which is conducted by Beijing Academy of Artificial Intelligence and Tsinghua Uni

Tsinghua AI 136 Dec 23, 2022
Code Release for Learning to Adapt to Evolving Domains

EAML Code release for "Learning to Adapt to Evolving Domains" (NeurIPS 2020) Prerequisites PyTorch = 0.4.0 (with suitable CUDA and CuDNN version) tor

23 Dec 07, 2022
Learning Off-Policy with Online Planning, CoRL 2021

LOOP: Learning Off-Policy with Online Planning Accepted in Conference of Robot Learning (CoRL) 2021. Harshit Sikchi, Wenxuan Zhou, David Held Paper In

Harshit Sikchi 24 Nov 22, 2022
Implementation for Simple Spectral Graph Convolution in ICLR 2021

Simple Spectral Graph Convolutional Overview This repo contains an example implementation of the Simple Spectral Graph Convolutional (S^2GC) model. Th

allenhaozhu 64 Dec 31, 2022
PyTorch GPU implementation of the ES-RNN model for time series forecasting

Fast ES-RNN: A GPU Implementation of the ES-RNN Algorithm A GPU-enabled version of the hybrid ES-RNN model by Slawek et al that won the M4 time-series

Kaung 305 Jan 03, 2023
Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces"

Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces" This repo contains the implementation of GEBO algorithm.

Jaeyeon Ahn 2 Mar 22, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Semantic Segmentation.

Swin Transformer for Semantic Segmentation of satellite images This repo contains the supported code and configuration files to reproduce semantic seg

23 Oct 10, 2022
A unified framework to jointly model images, text, and human attention traces.

connect-caption-and-trace This repository contains the reference code for our paper Connecting What to Say With Where to Look by Modeling Human Attent

Meta Research 73 Oct 24, 2022
IsoGCN code for ICLR2021

IsoGCN The official implementation of IsoGCN, presented in the ICLR2021 paper Isometric Transformation Invariant and Equivariant Graph Convolutional N

horiem 39 Nov 25, 2022
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this paper, we present the first con

Tong Zekun 28 Jan 08, 2023
This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the time series forecasting research space.

TSForecasting This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the tim

Rakshitha Godahewa 80 Dec 30, 2022
Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Max Berrendorf 16 Oct 14, 2022
Transfer-Learn is an open-source and well-documented library for Transfer Learning.

Transfer-Learn is an open-source and well-documented library for Transfer Learning. It is based on pure PyTorch with high performance and friendly API. Our code is pythonic, and the design is consist

THUML @ Tsinghua University 2.2k Jan 03, 2023
An Approach to Explore Logistic Regression Models

User-centered Regression An Approach to Explore Logistic Regression Models This tool applies the potential of Attribute-RadViz in identifying correlat

0 Nov 12, 2021
Mscp jamf - Build compliance in jamf

mscp_jamf Build compliance in Jamf. This will build the following xml pieces to

Bob Gendler 3 Jul 25, 2022
FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks

FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks Image Classification Dataset: Google Landmark, COCO, ImageNet Model: Efficient

FedML-AI 62 Dec 10, 2022
Kaggle | 9th place (part of) solution for the Bristol-Myers Squibb – Molecular Translation challenge

Part of the 9th place solution for the Bristol-Myers Squibb – Molecular Translation challenge translating images containing chemical structures into I

Erdene-Ochir Tuguldur 22 Nov 30, 2022
A Simplied Framework of GAN Inversion

Framework of GAN Inversion Introcuction You can implement your own inversion idea using our repo. We offer a full range of tuning settings (in hparams

Kangneng Zhou 13 Sep 27, 2022
Official Implementation of PCT

Official Implementation of PCT Prerequisites python == 3.8.5 Please make sure you have the following libraries installed: numpy torch=1.4.0 torchvisi

32 Nov 21, 2022