Facial Image Inpainting with Semantic Control

Overview

Facial Image Inpainting with Semantic Control

In this repo, we provide a model for the controllable facial image inpainting task. This model enables users to intuitively edit their images by using parametric 3D faces.

The technology report is comming soon.

  • Image Inpainting results

  • Fine-grained Control

Quick Start

Installation

  • Clone the repository and set up a conda environment with all dependencies as follows
git clone https://github.com/RenYurui/Controllable-Face-Inpainting.git --recursive
cd Controllable-Face-Inpainting

# 1. Create a conda virtual environment.
conda create -n cfi python=3.6
source activate cfi
conda install -c pytorch pytorch=1.7.1 torchvision cudatoolkit=10.2

# 2. install pytorch3d
conda install -c fvcore -c iopath -c conda-forge fvcore iopath
conda install -c bottler nvidiacub
git clone https://github.com/facebookresearch/pytorch3d.git
cd pytorch3d && pip install -e .

# 3. Install other dependencies
pip install -r requirements.txt

Download Prerequisite Models

  • Follow Deep3DFaceRecon to prepare ./BFM folder. Download 01_MorphableModel.mat and Expression Basis Exp_Pca.bin. Put the obtained files into the ./Deep3DFaceRecon_pytorch/BFM floder. Then link the folder to the root path.
ln -s /PATH_TO_REPO_ROOT/Deep3DFaceRecon_pytorch/BFM /PATH_TO_REPO_ROOT
  • Clone the Arcface repo
cd third_part
git clone https://github.com/deepinsight/insightface.git
cp -r ./insightface/recognition/arcface_torch/ ./

The Arcface is used to extract identity features for loss computation. Download the pre-trained model from Arcface using this link. By default, the resnet50 backbone (ms1mv3_arcface_r50_fp16) is used. Put the obtained weights into ./third_part/arcface_torch/ms1mv3_arcface_r50_fp16/backbone.pth

  • Download the pretrained weights of our model from Google Driven. Save the obtained files into folder ./result.

Inference

We provide some example images. Please run the following code for inference

CUDA_VISIBLE_DEVICES=0 python -m torch.distributed.launch --nproc_per_node=1 --master_port 1234 demo.py \
--config ./config/facial_image_renderer_ffhq.yaml \
--name facial_image_renderer_ffhq \
--output_dir ./visi_result \
--input_dir ./examples/inputs \
--mask_dir ./examples/masks

Train the model from scratch

Dataset Preparation

  • Download dataset. We use Celeba-HQ and FFHQ for training and inference. Please download the datasets (image format) and put them under ./dataset folder.
  • Obtain 3D faces by using Deep3DFaceRecon. Follow the Deep3DFaceRecon repo to download the trained weights. And save it as: ./Deep3DFaceRecon_pytorch/checkpoints/face_recon/epoch_20.pth
# 1. Extract keypoints from the face images for cropping.
cd scripts
# extracted keypoints from celeba
python extract_kp.py \
--data_root PATH_TO_CELEBA_ROOT \
--output_dir PATH_TO_KEYPOINTS \
--dataset celeba \
--device_ids 0,1 \
--workers 6

# 2. Extract 3DMM coefficients from the face images.
cd .. #repo root
# we provide some scripts for easy of use. However, one can use the original repo to extract the coefficients.
cp scripts/inference_options.py ./Deep3DFaceRecon_pytorch/options
cp scripts/face_recon.py ./Deep3DFaceRecon_pytorch
cp scripts/facerecon_inference_model.py ./Deep3DFaceRecon_pytorch/models
cp scripts/pytorch_3d.py ./Deep3DFaceRecon_pytorch/util
ln -s /PATH_TO_REPO_ROOT/third_part/arcface_torch /PATH_TO_REPO_ROOT/Deep3DFaceRecon_pytorch/models

cd Deep3DFaceRecon_pytorch

python face_recon.py \
--input_dir PATH_TO_CELEBA_ROOT \
--keypoint_dir PATH_TO_KEYPOINTS \
--output_dir PATH_TO_3DMM_COEFFICIENT \
--inference_batch_size 100 \
--name=face_recon \
--dataset_name celeba \
--epoch=20 \
--model facerecon_inference

# 3. Save images and the coefficients into a lmdb file.
cd .. #repo root
python prepare_data.py \
--root PATH_TO_CELEBA_ROOT \
--coeff_file PATH_TO_3DMM_COEFFICIENT \
--dataset celeba \
--out PATH_TO_CELEBA_LMDB_ROOT

Train The Model

# we first train the semantic_descriptor_recommender
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 --master_port 1234 train.py \
--config ./config/semantic_descriptor_recommender_celeba.yaml \
--name semantic_descriptor_recommender_celeba

# Then, we trian the facial_image_renderer for image inpainting
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 --master_port 1234 train.py \
--config ./config/facial_image_renderer_celeba.yaml \
--name facial_image_renderer_celeba
Owner
Ren Yurui
Ren Yurui
BTC-Generator - BTC Generator With Python

Что такое BTC-Generator? Это генератор чеков всеми любимого @BTC_BANKER_BOT Для

DoomGod 3 Aug 24, 2022
Generic Event Boundary Detection: A Benchmark for Event Segmentation

Generic Event Boundary Detection: A Benchmark for Event Segmentation We release our data annotation & baseline codes for detecting generic event bound

47 Nov 22, 2022
The repository offers the official implementation of our BMVC 2021 paper in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
Official PyTorch code for the paper: "Point-Based Modeling of Human Clothing" (ICCV 2021)

Point-Based Modeling of Human Clothing Paper | Project page | Video This is an official PyTorch code repository of the paper "Point-Based Modeling of

Visual Understanding Lab @ Samsung AI Center Moscow 64 Nov 22, 2022
This is an official implementation of the CVPR2022 paper "Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots".

Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots Blind2Unblind Citing Blind2Unblind @inproceedings{wang2022blind2unblind, tit

demonsjin 58 Dec 06, 2022
Lux AI environment interface for RLlib multi-agents

Lux AI interface to RLlib MultiAgentsEnv For Lux AI Season 1 Kaggle competition. LuxAI repo RLlib-multiagents docs Kaggle environments repo Please let

Jaime 12 Nov 07, 2022
Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring

Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring (to appear at AAAI 2022) We propose a machine-learning-bas

YunzhuangS 2 May 02, 2022
A Kitti Road Segmentation model implemented in tensorflow.

KittiSeg KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark

Marvin Teichmann 890 Jan 04, 2023
Designing a Practical Degradation Model for Deep Blind Image Super-Resolution (ICCV, 2021) (PyTorch) - We released the training code!

Designing a Practical Degradation Model for Deep Blind Image Super-Resolution Kai Zhang, Jingyun Liang, Luc Van Gool, Radu Timofte Computer Vision Lab

Kai Zhang 804 Jan 08, 2023
Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators

Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators This is our Pytorch implementation for t

RUCAIBox 12 Jul 22, 2022
Weakly Supervised 3D Object Detection from Point Cloud with Only Image Level Annotation

SCCKTIM Weakly Supervised 3D Object Detection from Point Cloud with Only Image-Level Annotation Our code will be available soon. The class knowledge t

1 Nov 12, 2021
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects

[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects YouTube | arXiv Prerequisites Kaolin is available here:

Denys Rozumnyi 107 Dec 26, 2022
Face-Recognition-based-Attendance-System - An implementation of Attendance System in python.

Face-Recognition-based-Attendance-System A real time implementation of Attendance System in python. Pre-requisites To understand the implentation of F

Muhammad Zain Ul Haque 1 Dec 31, 2021
TUPÃ was developed to analyze electric field properties in molecular simulations

TUPÃ: Electric field analyses for molecular simulations What is TUPÃ? TUPÃ (pronounced as tu-pan) is a python algorithm that employs MDAnalysis engine

Marcelo D. Polêto 10 Jul 17, 2022
MultiLexNorm 2021 competition system from ÚFAL

ÚFAL at MultiLexNorm 2021: Improving Multilingual Lexical Normalization by Fine-tuning ByT5 David Samuel & Milan Straka Charles University Faculty of

ÚFAL 13 Jun 28, 2022
Implementation of "Glancing Transformer for Non-Autoregressive Neural Machine Translation"

GLAT Implementation for the ACL2021 paper "Glancing Transformer for Non-Autoregressive Neural Machine Translation" Requirements Python = 3.7 Pytorch

117 Jan 09, 2023
Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021.

Conformal time-series forecasting Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021. If you use our code in yo

Kamilė Stankevičiūtė 36 Nov 21, 2022
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023