The codebase for Data-driven general-purpose voice activity detection.

Overview

Data driven GPVAD

Repository for the work in TASLP 2021 Voice activity detection in the wild: A data-driven approach using teacher-student training.

Framework

Sample predictions against other methods

Samples_1

Samples_2

Samples_3

Samples_4

Noise robustness

Speech

Background

Speech

Results

Our best model trained on the SRE (V3) dataset obtains the following results:

Precision Recall F1 AUC FER Event-F1
aurora_clean 96.844 95.102 95.93 98.66 3.06 74.8
aurora_noisy 90.435 92.871 91.544 97.63 6.68 54.45
dcase18 89.202 88.362 88.717 95.2 10.82 57.85

Usage

We provide most of our pretrained models in this repository, including:

  1. Both teachers (T_1, T_2)
  2. Unbalanced audioset pretrained model
  3. Voxceleb 2 pretrained model
  4. Our best submission (SRE V3 trained)

To download and run evaluation just do:

git clone https://github.com/RicherMans/Datadriven-VAD
cd Datadriven-VAD
pip3 install -r requirements.txt
python3 forward.py -w example/example.wav

Running this will print:

|   index | event_label   |   onset |   offset | filename            |
|--------:|:--------------|--------:|---------:|:--------------------|
|       0 | Speech        |    0.28 |     0.94 | example/example.wav |
|       1 | Speech        |    1.04 |     2.22 | example/example.wav |

Predicting voice activity

We support single file and filelist-batching in our script. Obtaining VAD predictions is easy:

python3 forward.py -w example/example.wav

Or if one prefers to do that batch_wise, first prepare a filelist: find . -type f -name *.wav > wavlist.txt' And then just run:

python3 forward.py -l wavlist

Extra parameters

  • -model adjusts the pretrained model. Can be one of t1,t2,v2,a2,a2_v2,sre. Refer to the paper for each respective model. By default we use sre.
  • -soft instead of predicting human-readable timestamps, the model is now outputting the raw probabilities.
  • -hard instead of predicting human-readable timestamps, the model is now outputting the post-processed 0-1 flags indicating speech. Please note this is different from the paper, which thresholded the soft probabilities without post-processing.
  • -th adjusts the threshold. If a single threshold is passed (e.g., -th 0.5), we utilize simple binearization. Otherwise use the default double threshold with -th 0.5 0.1.
  • -o outputs the results into a new folder.

Training from scratch

If you intend to rerun our work, prepare some data and extract log-Mel spectrogram features. Say, you have downloaded the balanced subset of AudioSet and stored all files in a folder data/balanced/. Then:

cd data;
mkdir hdf5 csv_labels;
find balanced -type f > wavs.txt;
python3 extract_features.py wavs.txt -o hdf5/balanced.h5
h5ls -r hdf5/balanced.h5 | awk -F[/' '] 'BEGIN{print "filename","hdf5path"}NR>1{print $2,"hdf5/balanced.h5"}'> csv_labels/balanced.csv

The input for our label prediction script is a csv file with exactly two columns, filename and hdf5path.

An example csv_labels/balanced.csv would be:

filename hdf5path
--PJHxphWEs_30.000.wav hdf5/balanced.h5                                                                                          
--ZhevVpy1s_50.000.wav hdf5/balanced.h5                                                                                          
--aE2O5G5WE_0.000.wav hdf5/balanced.h5                                                                                           
--aO5cdqSAg_30.000.wav hdf5/balanced.h5                                                                                          

After feature extraction, proceed to predict labels:

mkdir -p softlabels/{hdf5,csv};
python3 prepare_labels.py --pre ../pretrained_models/teacher1/model.pth csv_labels/balanced.csv softlabels/hdf5/balanced.h5 softlabels/csv/balanced.csv

Lastly, just train:

cd ../; #Go to project root
# Change config accoringly with input data
python3 run.py train configs/example.yaml

Citation

If youre using this work, please cite it in your publications.

@article{Dinkel2021,
author = {Dinkel, Heinrich and Wang, Shuai and Xu, Xuenan and Wu, Mengyue and Yu, Kai},
doi = {10.1109/TASLP.2021.3073596},
issn = {2329-9290},
journal = {IEEE/ACM Transactions on Audio, Speech, and Language Processing},
pages = {1542--1555},
title = {{Voice Activity Detection in the Wild: A Data-Driven Approach Using Teacher-Student Training}},
url = {https://ieeexplore.ieee.org/document/9405474/},
volume = {29},
year = {2021}
}

and

@inproceedings{Dinkel2020,
  author={Heinrich Dinkel and Yefei Chen and Mengyue Wu and Kai Yu},
  title={{Voice Activity Detection in the Wild via Weakly Supervised Sound Event Detection}},
  year=2020,
  booktitle={Proc. Interspeech 2020},
  pages={3665--3669},
  doi={10.21437/Interspeech.2020-0995},
  url={http://dx.doi.org/10.21437/Interspeech.2020-0995}
}
Owner
Heinrich Dinkel
日新月异
Heinrich Dinkel
A denoising autoencoder + adversarial losses and attention mechanisms for face swapping.

faceswap-GAN Adding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture. Updates Date Update 2018-08-2

3.2k Dec 30, 2022
Pipeline for employing a Lightweight deep learning models for LOW-power systems

PL-LOW A high-performance deep learning model lightweight pipeline that gradually lightens deep neural networks in order to utilize high-performance d

POSTECH Data Intelligence Lab 9 Aug 13, 2022
This repository contains the code for the CVPR 2020 paper "Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision"

Differentiable Volumetric Rendering Paper | Supplementary | Spotlight Video | Blog Entry | Presentation | Interactive Slides | Project Page This repos

697 Jan 06, 2023
Codes to calculate solar-sensor zenith and azimuth angles directly from hyperspectral images collected by UAV. Works only for UAVs that have high resolution GNSS/IMU unit.

UAV Solar-Sensor Angle Calculation Table of Contents About The Project Built With Getting Started Prerequisites Installation Datasets Contributing Lic

Sourav Bhadra 1 Jan 15, 2022
The fastai book, published as Jupyter Notebooks

English / Spanish / Korean / Chinese / Bengali / Indonesian The fastai book These notebooks cover an introduction to deep learning, fastai, and PyTorc

fast.ai 17k Jan 07, 2023
City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Code

City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Requirements Python 3.8 or later with all requirements.txt dependencies installed,

88 Dec 12, 2022
Structured Edge Detection Toolbox

################################################################### # # # Structure

Piotr Dollar 779 Jan 02, 2023
Python Wrapper for Embree

pyembree Python Wrapper for Embree Installation You can install pyembree (and embree) via the conda-forge package. $ conda install -c conda-forge pyem

Anthony Scopatz 67 Dec 24, 2022
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Jia Research Lab 115 Dec 23, 2022
Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021)

Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021) Kranti Kumar Parida, Siddharth Srivastava, Gaurav Sharma. We address the pr

Kranti Kumar Parida 33 Jun 27, 2022
A very tiny, very simple, and very secure file encryption tool.

Picocrypt is a very tiny (hence "Pico"), very simple, yet very secure file encryption tool. It uses the modern ChaCha20-Poly1305 cipher suite as well

Evan Su 1k Dec 30, 2022
Implementation of Pix2Seq in PyTorch

pix2seq-pytorch Implementation of Pix2Seq paper Different from the paper image input size 1280 bin size 1280 LambdaLR scheduler used instead of Linear

Tony Shin 9 Dec 15, 2022
Keqing Chatbot With Python

KeqingChatbot A public running instance can be found on telegram as @keqingchat_bot. Requirements Python 3.8 or higher. A bot token. Local Deploy git

Rikka-Chan 2 Jan 16, 2022
Code for layerwise detection of linguistic anomaly paper (ACL 2021)

Layerwise Anomaly This repository contains the source code and data for our ACL 2021 paper: "How is BERT surprised? Layerwise detection of linguistic

6 Dec 07, 2022
Source code for Fathony, Sahu, Willmott, & Kolter, "Multiplicative Filter Networks", ICLR 2021.

Multiplicative Filter Networks This repository contains a PyTorch MFN implementation and code to perform & reproduce experiments from the ICLR 2021 pa

Bosch Research 66 Jan 04, 2023
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

tricktreat 87 Dec 16, 2022
RoIAlign & crop_and_resize for PyTorch

RoIAlign for PyTorch This is a PyTorch version of RoIAlign. This implementation is based on crop_and_resize and supports both forward and backward on

Long Chen 530 Jan 07, 2023
Optimizing Deeper Transformers on Small Datasets

DT-Fixup Optimizing Deeper Transformers on Small Datasets Paper published in ACL 2021: arXiv Detailed instructions to replicate our results in the pap

16 Nov 14, 2022
Learning to Adapt Structured Output Space for Semantic Segmentation, CVPR 2018 (spotlight)

Learning to Adapt Structured Output Space for Semantic Segmentation Pytorch implementation of our method for adapting semantic segmentation from the s

Yi-Hsuan Tsai 782 Dec 30, 2022