Create and implement a deep learning library from scratch.

Related tags

Deep LearningARA
Overview

ARA1

In this project, we create and implement a deep learning library from scratch.

Table of Contents

About The Project

Deep learning can be considered as a subset of machine learning. It is a field that is based on learning and improving on its own by examining computer algorithms. Deep learning works with artificial neural networks consisting of many layers. This project, which is creating a Deep Learning Library from scratch, can be further implemented in various kinds of projects that involve Deep Learning. Which include, but are not limited to applications in Image, Natural Language and Speech processing, among others.

Aim

To implement a deep learning library from scratch.

Tech Stack

Technologies used in the project:

  • Python and numpy, pandas, matplotlib
  • Google Colab

File Structure

.
├── code
|   └── main.py                                   #contains the main code for the library
├── resources                                     #Notes 
|   ├── ImprovingDeepNeuralNetworks
|   |   ├── images
|   |   |   ├── BatchvsMiniBatch.png
|   |   |   ├── Bias.png
|   |   |   └── EWG.png
|   |   └── notes.md
|   ├── Course1.md                               
|   ├── accuracy.jpg
|   ├── error.jpg
|   └── grad_des_graph.jpg
├── LICENSE.txt
├── ProjectReport.pdf                            #Project Report
└── README.md                                    #Readme

Approach

The approach of the project is to basically create a deep learning library, as stated before. The aim of the project was to implement various deep learning algorithms, in order to drive a deep neural network and hence,create a deep learning library, which is modular,and driven on user input so that it can be applied for various deep learning processes, and to train and test it against a model.

Theory

A neural network is a network or circuit of neurons, or in a modern sense, an artificial neural network, composed of artificial neurons or nodes.

There are different types of Neural Networks

  • Standard Neural Networks
  • Convolutional Neural Networks
  • Recurring Neural Networks

Loss Function:

Loss function is defined so as to see how good the output ŷ is compared to output label y.

Cost Function :

Cost Function quantifies the error between predicted values and expected values.

Gradient Descent : -

Gradient descent is a first-order iterative optimization algorithm for finding a local minimum of a differentiable function.

Descent

Getting Started

Prerequisites

  • Object oriented programming in Python

  • Linear Algebra

  • Basic knowledge of Neural Networks

  • Python 3.6 and above

    You can visit the Python Download Guide for the installation steps.

  • Install numpy next

pip install numpy

Installation

  1. Clone the repo
git clone [email protected]:https://github.com/Ris-Bali/ARA.git

Results

Training

We trained a model on the iris dataset using ARA here's the video for the same -

ARA.mp4

As you may have observed we achieved an accuracy of nearly 100% while training the model.

Result

Results obtained during training: error (where Y-axis represents the value of the cost function and X axis represents the number of iterations) accuracy (where Y-axis represents the accuracy of the prediction wrt the labels and X-axis represents the number of iterations)

Future Work

  • Short term
    • Adding class for normalization and regularization
  • Near Future
    • Addition of support for linear regression
    • Addition of classes for LSTM and GRU blocks
  • Future goal
    • Addition of algorithms to support CNN models.
    • Addition of more Machine Learning algorithms
    • Include algorithms to facilitate Image Recognition, Machine Translation and Natural Language Processing

Troubleshooting

  • Numpy library not working so we shifted workspace to colab

Contributors

Acknowledgements

Resources

License

Describe your License for your project.

Owner
Rishabh Bali
Love to learn new stuff
Rishabh Bali
Vision Transformer for 3D medical image registration (Pytorch).

ViT-V-Net: Vision Transformer for Volumetric Medical Image Registration keywords: vision transformer, convolutional neural networks, image registratio

Junyu Chen 192 Dec 20, 2022
View model summaries in PyTorch!

torchinfo (formerly torch-summary) Torchinfo provides information complementary to what is provided by print(your_model) in PyTorch, similar to Tensor

Tyler Yep 1.5k Jan 05, 2023
Approaches to modeling terrain and maps in python

topography 🌎 Contains different approaches to modeling terrain and topographic-style maps in python Features Inverse Distance Weighting (IDW) A given

John Gutierrez 1 Aug 10, 2022
Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Noah Getz 3 Jun 22, 2022
Pixel-level Crack Detection From Images Of Levee Systems : A Comparative Study

PIXEL-LEVEL CRACK DETECTION FROM IMAGES OF LEVEE SYSTEMS : A COMPARATIVE STUDY G

Manisha Panta 2 Jul 23, 2022
Experiments and examples converting Transformers to ONNX

Experiments and examples converting Transformers to ONNX This repository containes experiments and examples on converting different Transformers to ON

Philipp Schmid 4 Dec 24, 2022
PyTorch Implementation of DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs

DiffGAN-TTS - PyTorch Implementation PyTorch implementation of DiffGAN-TTS: High

Keon Lee 157 Jan 01, 2023
This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems

Stability Audit This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems, Humantic

Data, Responsibly 4 Oct 27, 2022
Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Soubhik Sanyal 689 Dec 25, 2022
A Python package to create, run, and post-process MODFLOW-based models.

Version 3.3.5 — release candidate Introduction FloPy includes support for MODFLOW 6, MODFLOW-2005, MODFLOW-NWT, MODFLOW-USG, and MODFLOW-2000. Other s

388 Nov 29, 2022
PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime

Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime Created by Prarthana Bhattacharyya. Disclaimer: This is n

Prarthana Bhattacharyya 5 Nov 08, 2022
Pythonic particle-based (super-droplet) warm-rain/aqueous-chemistry cloud microphysics package with box, parcel & 1D/2D prescribed-flow examples in Python, Julia and Matlab

PySDM PySDM is a package for simulating the dynamics of population of particles. It is intended to serve as a building block for simulation systems mo

Atmospheric Cloud Simulation Group @ Jagiellonian University 32 Oct 18, 2022
Python package for downloading ECMWF reanalysis data and converting it into a time series format.

ecmwf_models Readers and converters for data from the ECMWF reanalysis models. Written in Python. Works great in combination with pytesmo. Citation If

TU Wien - Department of Geodesy and Geoinformation 31 Dec 26, 2022
URIE: Universal Image Enhancementfor Visual Recognition in the Wild

URIE: Universal Image Enhancementfor Visual Recognition in the Wild This is the implementation of the paper "URIE: Universal Image Enhancement for Vis

Taeyoung Son 43 Sep 12, 2022
Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals.

Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals This repo contains the Pytorch implementation of our paper: Unsupervised Seman

Wouter Van Gansbeke 335 Dec 28, 2022
Official PyTorch Implementation of GAN-Supervised Dense Visual Alignment

GAN-Supervised Dense Visual Alignment — Official PyTorch Implementation Paper | Project Page | Video This repo contains training, evaluation and visua

944 Jan 07, 2023
Multi-Template Mouse Brain MRI Atlas (MBMA): both in-vivo and ex-vivo

Multi-template MRI mouse brain atlas (both in vivo and ex vivo) Mouse Brain MRI atlas (both in-vivo and ex-vivo) (repository relocated from the origin

8 Nov 18, 2022
A Pytorch Implementation for Compact Bilinear Pooling.

CompactBilinearPooling-Pytorch A Pytorch Implementation for Compact Bilinear Pooling. Adapted from tensorflow_compact_bilinear_pooling Prerequisites I

169 Dec 23, 2022
This is an open solution to the Home Credit Default Risk challenge 🏡

Home Credit Default Risk: Open Solution This is an open solution to the Home Credit Default Risk challenge 🏡 . More competitions 🎇 Check collection

minerva.ml 427 Dec 27, 2022
[CVPR22] Official codebase of Semantic Segmentation by Early Region Proxy.

RegionProxy Figure 2. Performance vs. GFLOPs on ADE20K val split. Semantic Segmentation by Early Region Proxy Yifan Zhang, Bo Pang, Cewu Lu CVPR 2022

Yifan 54 Nov 29, 2022