The official repository for our paper "The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers". We significantly improve the systematic generalization of transformer models on a variety of datasets using simple tricks and careful considerations.

Overview

Codebase for training transformers on systematic generalization datasets.

The official repository for our EMNLP 2021 paper The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers.

Setup

This project requires Python 3 (tested with Python 3.8 and 3.9) and PyTorch 1.8.

pip3 install -r requirements.txt

Create a Weights and Biases account and run

wandb login

More information on setting up Weights and Biases can be found on https://docs.wandb.com/quickstart.

For plotting, LaTeX is required (to avoid Type 3 fonts and to render symbols). Installation is OS specific.

Downloading data

All datasets are downloaded automatically except the Mathematics Dataset and CFQ which is hosted in Google Cloud and one has to log in with his/her Google account to be able to access it.

Math dataset

Download the .tar.gz file manually from here:

https://console.cloud.google.com/storage/browser/mathematics-dataset?pli=1

Copy it to the cache/dm_math/ folder. You should have a cache/dm_math/mathematics_dataset-v1.0.tar.gz file in the project folder if you did everyhing correctly.

CFQ

Download the .tar.gz file manually from here:

https://storage.cloud.google.com/cfq_dataset/cfq1.1.tar.gz

Copy it to the cache/CFQ/ folder. You should have a cache/CFQ/cfq1.1.tar.gz file in the project folder if you did everyhing correctly.

Usage

Running the experiments from the paper on a cluster

The code makes use of Weights and Biases for experiment tracking. In the sweeps directory, we provide sweep configurations for all experiments we have performed. The sweeps are officially meant for hyperparameter optimization, but we use them to run multiple configurations and seeds.

To reproduce our results, start a sweep for each of the YAML files in the sweeps directory. Run wandb agent for each of them in the root directory of the project. This will run all the experiments, and they will be displayed on the W&B dashboard. The name of the sweeps must match the name of the files in sweeps directory, except the .yaml ending. More details on how to run W&B sweeps can be found at https://docs.wandb.com/sweeps/quickstart.

For example, if you want to run Math Dataset experiments, run wandb sweep --name dm_math sweeps/dm_math.yaml. This creates the sweep and prints out its ID. Then run wandb agent <ID> with that ID.

Re-creating plots from the paper

Edit config file paper/config.json. Enter your project name in the field "wandb_project" (e.g. "username/project").

Run the scripts in the paper directory. For example:

cd paper
./run_all.sh

The output will be generated in the paper/out/ directory. Tables will be printed to stdout in latex format.

If you want to reproduce individual plots, it can be done by running individial python files in the paper directory.

Running experiments locally

It is possible to run single experiments with Tensorboard without using Weights and Biases. This is intended to be used for debugging the code locally.

If you want to run experiments locally, you can use run.py:

./run.py sweeps/tuple_rnn.yaml

If the sweep in question has multiple parameter choices, run.py will interactively prompt choices of each of them.

The experiment also starts a Tensorboard instance automatically on port 7000. If the port is already occupied, it will incrementally search for the next free port.

Note that the plotting scripts work only with Weights and Biases.

Reducing memory usage

In case some tasks won't fit on your GPU, play around with "-max_length_per_batch " argument. It can trade off memory usage/speed by slicing batches and executing them in multiple passes. Reduce it until the model fits.

BibTex

@inproceedings{csordas2021devil,
      title={The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers}, 
      author={R\'obert Csord\'as and Kazuki Irie and J\"urgen Schmidhuber},
      booktitle={Proc. Conf. on Empirical Methods in Natural Language Processing (EMNLP)},
      year={2021},
      month={November},
      address={Punta Cana, Dominican Republic}
}
Owner
Csordás Róbert
Csordás Róbert
Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Seulki Park 70 Jan 03, 2023
Make your AirPlay devices as TTS speakers

Apple AirPlayer Home Assistant integration component, make your AirPlay devices as TTS speakers. Before Use 2021.6.X or earlier Apple Airplayer compon

George Zhao 117 Dec 15, 2022
A Python-based development platform for automated trading systems - from backtesting to optimisation to livetrading.

AutoTrader AutoTrader is Python-based platform intended to help in the development, optimisation and deployment of automated trading systems. From sim

Kieran Mackle 485 Jan 09, 2023
Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning"

Prompt-Tuning Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning" Currently, we support the following huggigface models: Bart

Andrew Zeng 36 Dec 19, 2022
Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

66 Dec 15, 2022
Source code for Task-Aware Variational Adversarial Active Learning

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

27 Nov 23, 2022
Synthesize photos from PhotoDNA using machine learning 🌱

Ribosome Synthesize photos from PhotoDNA. See the blog post for more information. Installation Dependencies You can install Python dependencies using

Anish Athalye 112 Nov 23, 2022
Implementation for "Domain-Specific Bias Filtering for Single Labeled Domain Generalization"

DSBF Introduction This repository contains the implementation code for paper: Domain-Specific Bias Filtering for Single Labeled Domain Generalization

ScottYuan 7 Jan 05, 2023
Implementation of ResMLP, an all MLP solution to image classification, in Pytorch

ResMLP - Pytorch Implementation of ResMLP, an all MLP solution to image classification out of Facebook AI, in Pytorch Install $ pip install res-mlp-py

Phil Wang 178 Dec 02, 2022
MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

187 Dec 26, 2022
Like Dirt-Samples, but cleaned up

Clean-Samples Like Dirt-Samples, but cleaned up, with clear provenance and license info (generally a permissive creative commons licence but check the

TidalCycles 39 Nov 30, 2022
Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Bae, Gwangbin 95 Jan 04, 2023
Self-Supervised Pillar Motion Learning for Autonomous Driving (CVPR 2021)

Self-Supervised Pillar Motion Learning for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Self-Supervised Pillar Motion Learning for Autono

QCraft 101 Dec 05, 2022
PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge"

FSGAN Here is the official PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge". This project achieve the translation between

Deng-Ping Fan 32 Oct 10, 2022
Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy"

Shapeland Simulator Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy" Download the video at https://www.youtube.com/watch?

TouringPlans.com 70 Dec 14, 2022
2021 Artificial Intelligence Diabetes Datathon

A.I.D.D. 2021 2021 Artificial Intelligence Diabetes Datathon A.I.D.D. 2021은 ‘2021 인공지능 학습용 데이터 구축사업’을 통해 만들어진 학습용 데이터를 활용하여 당뇨병을 효과적으로 예측할 수 있는가에 대한 A

2 Dec 27, 2021
MiraiML: asynchronous, autonomous and continuous Machine Learning in Python

MiraiML Mirai: future in japanese. MiraiML is an asynchronous engine for continuous & autonomous machine learning, built for real-time usage. Usage In

Arthur Paulino 25 Jul 27, 2022
Churn-Prediction-Project - In this project, a churn prediction model is developed for a private bank as a term project for Data Mining class.

Churn-Prediction-Project In this project, a churn prediction model is developed for a private bank as a term project for Data Mining class. Project in

1 Jan 03, 2022
PyTorch source code for Distilling Knowledge by Mimicking Features

LSHFM.detection This is the PyTorch source code for Distilling Knowledge by Mimicking Features. And this project contains code for object detection wi

Guo-Hua Wang 4 Dec 17, 2022
Road Crack Detection Using Deep Learning Methods

Road-Crack-Detection-Using-Deep-Learning-Methods This is my Diploma Thesis ¨Road Crack Detection Using Deep Learning Methods¨ under the supervision of

Aggelos Katsaliros 3 May 03, 2022