Tandem Mass Spectrum Prediction with Graph Transformers

Overview

MassFormer

This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv.

Setting Up Environment

We recommend using conda. Three conda yml files are provided in the env/ directory (cpu.yml, cu101.yml, cu102.yml), providing different pytorch installation options (CPU-only, CUDA 10.1, CUDA 10.2). They can be trivially modified to support other versions of CUDA.

To set up an environment, run the command conda env create -f ${CONDA_YAML}, where ${CONDA_YAML} is the path to the desired yaml file.

Downloading NIST Data

Note: this step requires a Windows System or Virtual Machine

The NIST 2020 LC-MS/MS dataset can be purchased from an authorized distributor. The spectra and associated compounds can be exported to MSP/MOL format using the included lib2nist software. There is a single MSP file which contains all of the mass spectra, and multiple MOL files which include the molecular structure information for each spectrum (linked by ID). We've included a screenshot describing the lib2nist export settings.

Alt text

There is a minor bug in the export software that sometimes results in errors when parsing the MOL files. To fix this bug, run the script python mol_fix.py ${MOL_DIR}, where ${MOL_DIR} is a path to the NIST export directory with MOL files.

Downloading Massbank Data

The MassBank of North America (MB-NA) data is in MSP format, with the chemical information provided in the form of a SMILES string (as opposed to a MOL file). It can be downloaded from the MassBank website, under the tab "LS-MS/MS Spectra".

Exporting and Preparing Data

We recommend creating a directory called data/ and placing the downloaded and uncompressed data into a folder data/raw/.

To parse both of the datasets, run parse_and_export.py. Then, to prepare the data for model training, run prepare_data.py. By default the processed data will end up in data/proc/.

Setting Up Weights and Biases

Our implementation uses Weights and Biases (W&B) for logging and visualization. For full functionality, you must set up a free W&B account.

Training Models

A default config file is provided in "config/template.yml". This trains a MassFormer model on the NIST HCD spectra. Our experiments used systems with 32GB RAM, 1 Nvidia RTX 2080 (11GB VRAM), and 6 CPU cores.

The config/ directory has a template config file template.yml and 8 files corresponding to the experiments from the paper. The template config can be modified to train models of your choosing.

To train a template model without W&B with only CPU, run python runner.py -w False -d -1

To train a template model with W&B on CUDA device 0, run python runner.py -w True -d 0

Reproducing Tables

To reproduce a model from one of the experiments in Table 2 or Table 3 from the paper, run python runner.py -w True -d 0 -c ${CONFIG_YAML} -n 5 -i ${RUN_ID}, where ${CONFIG_YAML} refers to a specific yaml file in the config/ directory and ${RUN_ID} refers to an arbitrary but unique integer ID.

Reproducing Visualizations

The explain.py script can be used to reproduce the visualizations in the paper, but requires a trained model saved on W&B (i.e. by running a script from the previous section).

To reproduce a visualization from Figures 2,3,4,5, run python explain.py ${WANDB_RUN_ID} --wandb_mode=online, where ${WANDB_RUN_ID} is the unique W&B run id of the desired model's completed training script. The figues will be uploaded as PNG files to W&B.

Reproducing Sweeps

The W&B sweep config files that were used to select model hyperparameters can be found in the sweeps/ directory. They can be initialized using wandb sweep ${PATH_TO_SWEEP}.

Owner
Röst Lab
Röst lab at U of T -- join us at https://gitter.im/Roestlab/Lobby
Röst Lab
In-memory Graph Database and Knowledge Graph with Natural Language Interface, compatible with Pandas

CogniPy for Pandas - In-memory Graph Database and Knowledge Graph with Natural Language Interface Whats in the box Reasoning, exploration of RDF/OWL,

Cognitum Octopus 34 Dec 13, 2022
Yata is a fast, simple and easy Data Visulaization tool, running on python dash

Yata is a fast, simple and easy Data Visulaization tool, running on python dash. The main goal of Yata is to provide a easy way for persons with little programming knowledge to visualize their data e

Cybercreek 3 Jun 28, 2021
Insert SVGs into matplotlib

Insert SVGs into matplotlib

Andrew White 35 Dec 29, 2022
Boltzmann visualization - Visualize the Boltzmann distribution for simple quantum models of molecular motion

Boltzmann visualization - Visualize the Boltzmann distribution for simple quantum models of molecular motion

1 Jan 22, 2022
Statistics and Visualization of acceptance rate, main keyword of CVPR 2021 accepted papers for the main Computer Vision conference (CVPR)

Statistics and Visualization of acceptance rate, main keyword of CVPR 2021 accepted papers for the main Computer Vision conference (CVPR)

Hoseong Lee 78 Aug 23, 2022
This project is created to visualize the system statistics such as memory usage, CPU usage, memory accessible by process and much more using Kibana Dashboard with Elasticsearch.

System Stats Visualizer This project is created to visualize the system statistics such as memory usage, CPU usage, memory accessible by process and m

Vishal Teotia 5 Feb 06, 2022
Movie recommendation using RASA, TigerGraph

Demo run: The below video will highlight the runtime of this setup and some sample real-time conversations using the power of RASA + TigerGraph, Steps

Sudha Vijayakumar 3 Sep 10, 2022
Write python locally, execute SQL in your data warehouse

RasgoQL Write python locally, execute SQL in your data warehouse ≪ Read the Docs · Join Our Slack » RasgoQL is a Python package that enables you to ea

Rasgo 265 Nov 21, 2022
:small_red_triangle: Ternary plotting library for python with matplotlib

python-ternary This is a plotting library for use with matplotlib to make ternary plots plots in the two dimensional simplex projected onto a two dime

Marc 611 Dec 29, 2022
Uniform Manifold Approximation and Projection

UMAP Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction technique that can be used for visualisation similarly to t-SNE, bu

Leland McInnes 6k Jan 08, 2023
Turn a STAC catalog into a dask-based xarray

StackSTAC Turn a list of STAC items into a 4D xarray DataArray (dims: time, band, y, x), including reprojection to a common grid. The array is a lazy

Gabe Joseph 148 Dec 19, 2022
📊 Charts with pure python

A zero-dependency python package that prints basic charts to a Jupyter output Charts supported: Bar graphs Scatter plots Histograms 🍑 📊 👏 Examples

Max Humber 54 Oct 04, 2022
Library for exploring and validating machine learning data

TensorFlow Data Validation TensorFlow Data Validation (TFDV) is a library for exploring and validating machine learning data. It is designed to be hig

688 Jan 03, 2023
Decision Border Visualizer for Classification Algorithms

dbv Decision Border Visualizer for Classification Algorithms Project description A python package for Machine Learning Engineers who want to visualize

Sven Eschlbeck 1 Nov 01, 2021
Generate SVG (dark/light) images visualizing (private/public) GitHub repo statistics for profile/website.

Generate daily updated visualizations of GitHub user and repository statistics from the GitHub API using GitHub Actions for any combination of private and public repositories, whether owned or contri

Adam Ross 2 Dec 16, 2022
ICS-Visualizer is an interactive Industrial Control Systems (ICS) network graph that contains up-to-date ICS metadata

ICS-Visualizer is an interactive Industrial Control Systems (ICS) network graph that contains up-to-date ICS metadata (Name, company, port, user manua

QeeqBox 2 Dec 13, 2021
Function Plotter: a simple application with GUI to plot mathematical functions

Function-Plotter Function Plotter is a simple application with GUI to plot mathe

Mohamed Nabawe 4 Jan 03, 2022
A site that displays up to date COVID-19 stats, powered by fastpages.

https://covid19dashboards.com This project was built with fastpages Background This project showcases how you can use fastpages to create a static das

GitHub 1.6k Jan 07, 2023
Pretty Confusion Matrix

Pretty Confusion Matrix Why pretty confusion matrix? We can make confusion matrix by using matplotlib. However it is not so pretty. I want to make con

Junseo Ko 5 Nov 22, 2022
Visualise Ansible execution time across playbooks, tasks, and hosts.

ansible-trace Visualise where time is spent in your Ansible playbooks: what tasks, and what hosts, so you can find where to optimise and decrease play

Mark Hansen 81 Dec 15, 2022