[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction

Overview

PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction

International Conference on 3D Vision, 2020

1Center for Visual Information Technology, IIIT Hyderabad



Abstract
We introduce PeeledHuman - a novel shape representation of the human body that is robust to self-occlusions. PeeledHuman encodes the human body as a set of Peeled Depth and RGB maps in 2D, obtained by performing raytracing on the 3D body model and extending each ray beyond its first intersection. This formulation allows us to handle self-occlusions efficiently compared to other representations. Given a monocular RGB image, we learn these Peeled maps in an end-to-end generative adversarial fashion using our novel framework - PeelGAN. We train PeelGAN using a 3D Chamfer loss and other 2D losses to generate multiple depth values per-pixel and a corresponding RGB field per-vertex in a dual-branch setup. In our simple non-parametric solution, the generated Peeled Depth maps are back-projected to 3D space to obtain a complete textured 3D shape. The corresponding RGB maps provide vertex-level texture details. We compare our method with current parametric and non-parametric methods in 3D reconstruction and find that we achieve state-of-theart-results. We demonstrate the effectiveness of our representation on publicly available BUFF and MonoPerfCap datasets as well as loose clothing data collected by our calibrated multi-Kinect setup.

Testing

Install environment

$ conda env create -f environment.yml

Download the checkpoint from here and store it in ./checkpoints/test/. The provided checkpoint was trained on the MonoPerfCap dataset.

Run the inference script

python test.py                            \
  --test_folder_path <path/to/images/dir> \
  --results_dir <path/to/results/dir>     \
  --name test                             \
  --direction AtoB                        \
  --model pix2pix                         \
  --netG resnet_18blocks                  \
  --output_nc 4                           \
  --load_size 512                         \
  --eval

The script looks for the checkpoint file in checkpoints/<checkpoint/name>

Citation

@inproceedings {jinka2020peeledhuman,
  author = {S. Jinka and R. Chacko and A. Sharma and P. Narayanan},
  booktitle = {2020 International Conference on 3D Vision (3DV)},
  title = {PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction},
  year = {2020},
  pages = {879-888},
  doi = {10.1109/3DV50981.2020.00098},
  publisher = {IEEE Computer Society},
  }
  

Acknowledgements

Our network derives from the pix2pix work and hence builds on the official PyTorch implementation of pix2pix. This README template was borrowed from Aakash Kt. Please open an issue in case of any bugs/queries.

Owner
Rohan Chacko
CS Senior | Working on 3D Human reconstruction
Rohan Chacko
Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Accompanying code for the paper Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Kevin Wilkinghoff 6 Dec 01, 2022
Fine-grained Post-training for Improving Retrieval-based Dialogue Systems - NAACL 2021

Fine-grained Post-training for Multi-turn Response Selection Implements the model described in the following paper Fine-grained Post-training for Impr

Janghoon Han 83 Dec 20, 2022
GAN example for Keras. Cuz MNIST is too small and there should be something more realistic.

Keras-GAN-Animeface-Character GAN example for Keras. Cuz MNIST is too small and there should an example on something more realistic. Some results Trai

160 Sep 20, 2022
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to match the in

677 Dec 28, 2022
Repository of continual learning papers

Continual learning paper repository This repository contains an incomplete (but dynamically updated) list of papers exploring continual learning in ma

29 Jan 05, 2023
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

Yunjey Choi 5.1k Dec 30, 2022
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.

InfoPro-Pytorch The Information Propagation algorithm for training deep networks with local supervision. (ICLR 2021) Revisiting Locally Supervised Lea

78 Dec 27, 2022
Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network"

M3D-VTON: A Monocular-to-3D Virtual Try-On Network Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network" Paper | Suppl

109 Dec 29, 2022
some academic posters as references. May we have in-person poster session soon!

some academic posters as references. May we have in-person poster session soon!

Bolei Zhou 472 Jan 06, 2023
The Few-Shot Bot: Prompt-Based Learning for Dialogue Systems

Few-Shot Bot: Prompt-Based Learning for Dialogue Systems This repository includes the dataset, experiments results, and code for the paper: Few-Shot B

Andrea Madotto 103 Dec 28, 2022
dualFace: Two-Stage Drawing Guidance for Freehand Portrait Sketching (CVMJ)

dualFace dualFace: Two-Stage Drawing Guidance for Freehand Portrait Sketching (CVMJ) We provide python implementations for our CVM 2021 paper "dualFac

Haoran XIE 46 Nov 10, 2022
Scaling Vision with Sparse Mixture of Experts

Scaling Vision with Sparse Mixture of Experts This repository contains the code for training and fine-tuning Sparse MoE models for vision (V-MoE) on I

Google Research 290 Dec 25, 2022
Part-Aware Data Augmentation for 3D Object Detection in Point Cloud

Part-Aware Data Augmentation for 3D Object Detection in Point Cloud This repository contains a reference implementation of our Part-Aware Data Augment

Jaeseok Choi 62 Jan 03, 2023
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place

Mikaela Uy 294 Dec 12, 2022
Direct LiDAR Odometry: Fast Localization with Dense Point Clouds

Direct LiDAR Odometry: Fast Localization with Dense Point Clouds DLO is a lightweight and computationally-efficient frontend LiDAR odometry solution w

VECTR at UCLA 369 Dec 30, 2022
The official implementation of paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks" (IJCV under review).

DGMS This is the code of the paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks". Installation Our code works with Pytho

Runpei Dong 3 Aug 28, 2022
This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees

Mega-NeRF This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees used by the Mega-NeRF-Dynamic viewe

cmusatyalab 260 Dec 28, 2022
2D Human Pose estimation using transformers. Implementation in Pytorch

PE-former: Pose Estimation Transformer Vision transformer architectures perform very well for image classification tasks. Efforts to solve more challe

Panteleris Paschalis 23 Oct 17, 2022
code for our BMVC 2021 paper "HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification"

HCV_IIRC code for our BMVC 2021 paper HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification by Kai Wang, Xialei Li

kai wang 13 Oct 03, 2022
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023