The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation"

Related tags

Deep LearningRegSeg
Overview

RegSeg

The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation"

Paper: arxiv

params

D block

DBlock

Decoder

Decoder

Setup

Install the dependencies in requirements.txt by using pip and virtualenv.

Download Cityscapes

go to https://www.cityscapes-dataset.com, create an account, and download gtFine_trainvaltest.zip and leftImg8bit_trainvaltest.zip. You can delete the test images to save some space if you don't want to submit to the competition. Name the directory cityscapes_dataset. Make sure that you have downloaded the required python packages and run

CITYSCAPES_DATASET=cityscapes_dataset csCreateTrainIdLabelImgs

There are 19 classes.

Results from paper

To see the ablation studies results from the paper, go here.

Usage

To visualize your model, go to show.py. To train, validate, benchmark, and save the results of your model, go to train.py.

Results on Cityscapes server

RegSeg (exp48_decoder26, 30FPS): 78.3

Larger RegSeg (exp53_decoder29, 20 FPS): 79.5

Citation

If you find our work helpful, please consider citing our paper.

@article{gao2021rethink,
  title={Rethink Dilated Convolution for Real-time Semantic Segmentation},
  author={Gao, Roland},
  journal={arXiv preprint arXiv:2111.09957},
  year={2021}
}
Comments
  • question about STDC2-Seg75

    question about STDC2-Seg75

    Hi, I note that you benchmark the computation of STDC2-Seg75 which is not reported in the CVPR2021 paper. Did you test the speed of STDC-Seg on your own platform? How about the results?

    opened by ydhongHIT 2
  • Can not show.py

    Can not show.py

    I try show.py. But I can not.

    $ python3 show.py
    name= cityscapes
    train size: 2975
    val size: 500
    Traceback (most recent call last):
      File "show.py", line 358, in <module>
        show_cityscapes_model()
      File "show.py", line 337, in show_cityscapes_model
        show(model,val_loader,device,show_cityscapes_mask,num_images=num_images,skip=skip,images_per_line=images_per_line)
      File "show.py", line 134, in show
        outputs = model(images)
      File "/home/sounansu/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
        return forward_call(*input, **kwargs)
      File "/home/sounansu/RegSeg/model.py", line 76, in forward
        x=self.stem(x)
      File "/home/sounansu/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
        return forward_call(*input, **kwargs)
      File "/home/sounansu/RegSeg/blocks.py", line 22, in forward
        x = self.conv(x)
      File "/home/sounansu/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
        return forward_call(*input, **kwargs)
      File "/home/sounansu/.local/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 446, in forward
        return self._conv_forward(input, self.weight, self.bias)
      File "/home/sounansu/.local/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 442, in _conv_forward
        return F.conv2d(input, weight, bias, self.stride,
    RuntimeError: Input type (torch.cuda.FloatTensor) and weight type (torch.FloatTensor) should be the same
    
    opened by sounansu 2
  • The pretrained model link

    The pretrained model link

    Hi, thank you for sharing the code. Can you provide download link about the pretrained model(exp48_decoder26 and exp53_decoder29) in Cityscapes dataset, Thank you very much!

    opened by gaowq2017 1
  • About train bug

    About train bug

    When using seg_transforms.py through your scripts 'camvid_efficientnet_b1_hyperseg-s', there always exsist 'TypeError: resize() got an unexpected keyword argument 'interpolation'' in 174 line. Does this bug only appear in this scripts and should I modify the code when using this scripts?

    opened by 870572761 0
  • CVE-2007-4559 Patch

    CVE-2007-4559 Patch

    Patching CVE-2007-4559

    Hi, we are security researchers from the Advanced Research Center at Trellix. We have began a campaign to patch a widespread bug named CVE-2007-4559. CVE-2007-4559 is a 15 year old bug in the Python tarfile package. By using extract() or extractall() on a tarfile object without sanitizing input, a maliciously crafted .tar file could perform a directory path traversal attack. We found at least one unsantized extractall() in your codebase and are providing a patch for you via pull request. The patch essentially checks to see if all tarfile members will be extracted safely and throws an exception otherwise. We encourage you to use this patch or your own solution to secure against CVE-2007-4559. Further technical information about the vulnerability can be found in this blog.

    If you have further questions you may contact us through this projects lead researcher Kasimir Schulz.

    opened by TrellixVulnTeam 0
  • About train code

    About train code

    When training, how did the miou and accuracy calculate? On train dataset or validate dataset? I think it's calculated on val dataset due to https://github.com/RolandGao/RegSeg/blob/main/train.py#L238. I trained the base regseg model with config cityscapes_trainval_1000epochs.yam on Cityscapes and got the unbelievable results. 840794c66f23deb33666dcffc4af5b5

    opened by Asthestarsfalll 6
  • confusion on field of view  and model inference time

    confusion on field of view and model inference time

    Hi, RolandGao, nice to see a good job! I see you've done a lot of experiments on the backbone setting, but I still have some confusion after reading your published paper.

    • First, You calculate the fov of 4095 to see the bottom-right pixel when training cityscape (1024x2048), so you have verify the backbone should be exp48 [ (1,1) + (1,2) + 4 * (1, 4) + 7 *(1, 14) ] with fov (3807). But I also find the same backbone when training the CamVid (720x960). Why not use a shallow backbone? I am training my own dataset with image resolution (512 x 512), do I need to modify the backbone architecture? Can you give some advice?
    • Second, I test inference time of regseg. I notice that the speed is not better than other real-time archs due to split and dilated conv even if model costs low GFLOPs. In the application, what we are concerned about is the speed, so is there any strategy to improve the speed?
    opened by LinaShanghaitech 5
  • Why not pretrain on ImageNet?

    Why not pretrain on ImageNet?

    Hi, Thanks for your excellent work ! I notice that RegSeg can achieve a high accuracy on Cityscapes without pretraining. I also did a lot of ablation studies and I think DDRNet will drop around 3% miou if they do not use ImageNet pretraining. How about trying to train your encoder on ImageNet and see what will happen? I really look forward to your result ! Thanks !

    opened by RobinhoodKi 1
Owner
Roland
University of Toronto CS 2023
Roland
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
A PyTorch port of the Neural 3D Mesh Renderer

Neural 3D Mesh Renderer (CVPR 2018) This repo contains a PyTorch implementation of the paper Neural 3D Mesh Renderer by Hiroharu Kato, Yoshitaka Ushik

Daniilidis Group University of Pennsylvania 1k Jan 09, 2023
Project repo for the paper SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition

SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition (BMVC 2021) Project repo for the paper SILT: Self-supervised Lighting Trans

6 Dec 04, 2022
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs

Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs ArXiv Abstract Convolutional Neural Networks (CNNs) have become the de f

Philipp Benz 12 Oct 24, 2022
Code, pre-trained models and saliency results for the paper "Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB Images".

Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB This repository is the official implementation of the paper. Our results comming soon in

Xiaoqiang Wang 8 May 22, 2022
Code for "Localization with Sampling-Argmax", NeurIPS 2021

Localization with Sampling-Argmax [Paper] [arXiv] [Project Page] Localization with Sampling-Argmax Jiefeng Li, Tong Chen, Ruiqi Shi, Yujing Lou, Yong-

JeffLi 71 Dec 17, 2022
Examples of how to create colorful, annotated equations in Latex using Tikz.

The file "eqn_annotate.tex" is the main latex file. This repository provides four examples of annotated equations: [example_prob.tex] A simple one ins

SyNeRCyS Research Lab 3.2k Jan 05, 2023
CT-Net: Channel Tensorization Network for Video Classification

[ICLR2021] CT-Net: Channel Tensorization Network for Video Classification @inproceedings{ li2021ctnet, title={{\{}CT{\}}-Net: Channel Tensorization Ne

33 Nov 15, 2022
Lightweight Face Image Quality Assessment

LightQNet This is a demo code of training and testing [LightQNet] using Tensorflow. Uncertainty Losses: IDQ loss PCNet loss Uncertainty Networks: Mobi

Kaen 5 Nov 18, 2022
It is the assignment for COMP 576 in Rice University

COMP-576 It is the assignment for COMP 576 in Rice University There are two programming assignments and one Final Project. Assignment 1: It is a MLP a

Maojie Tang 1 Nov 25, 2021
Implementation of "Debiasing Item-to-Item Recommendations With Small Annotated Datasets" (RecSys '20)

Debiasing Item-to-Item Recommendations With Small Annotated Datasets This is the code for our RecSys '20 paper. Other materials can be found here: Ful

Microsoft 34 Aug 10, 2022
PyTorch implementation for paper "Full-Body Visual Self-Modeling of Robot Morphologies".

Full-Body Visual Self-Modeling of Robot Morphologies Boyuan Chen, Robert Kwiatkowskig, Carl Vondrick, Hod Lipson Columbia University Project Website |

Boyuan Chen 32 Jan 02, 2023
functorch is a prototype of JAX-like composable function transforms for PyTorch.

functorch is a prototype of JAX-like composable function transforms for PyTorch.

Facebook Research 1.2k Jan 09, 2023
Competitive Programming Club, Clinify's Official repository for CP problems hosting by club members.

Clinify-CPC_Programs This repository holds the record of the competitive programming club where the competitive coding aspirants are thriving hard and

Clinify Open Sauce 4 Aug 22, 2022
An implementation for the ICCV 2021 paper Deep Permutation Equivariant Structure from Motion.

Deep Permutation Equivariant Structure from Motion Paper | Poster This repository contains an implementation for the ICCV 2021 paper Deep Permutation

72 Dec 27, 2022
Code for "OctField: Hierarchical Implicit Functions for 3D Modeling (NeurIPS 2021)"

OctField(Jittor): Hierarchical Implicit Functions for 3D Modeling Introduction This repository is code release for OctField: Hierarchical Implicit Fun

55 Dec 08, 2022
Python Environment for Bayesian Learning

Pebl is a python library and command line application for learning the structure of a Bayesian network given prior knowledge and observations. Pebl in

Abhik Shah 103 Jul 14, 2022
A Python Package For System Identification Using NARMAX Models

SysIdentPy is a Python module for System Identification using NARMAX models built on top of numpy and is distributed under the 3-Clause BSD license. N

Wilson Rocha 175 Dec 25, 2022
(NeurIPS 2020) Wasserstein Distances for Stereo Disparity Estimation

Wasserstein Distances for Stereo Disparity Estimation Accepted in NeurIPS 2020 as Spotlight. [Project Page] Wasserstein Distances for Stereo Disparity

Divyansh Garg 92 Dec 12, 2022
Disentangled Lifespan Face Synthesis

Disentangled Lifespan Face Synthesis Project Page | Paper Demo on Colab Preparation Please follow this github to prepare the environments and dataset.

何森 50 Sep 20, 2022