Q-Fin: A Python library for mathematical finance.

Related tags

FinanceQ-Fin
Overview

Q-Fin

A Python library for mathematical finance.

Installation

https://pypi.org/project/QFin/

pip install qfin

Bond Pricing

Option Pricing

Black-Scholes Pricing

Theoretical options pricing for non-dividend paying stocks is available via the BlackScholesCall and BlackScholesPut classes.

from qfin.options import BlackScholesCall
from qfin.options import BlackScholesPut
# 100 - initial underlying asset price
# .3 - asset underlying volatility
# 100 - option strike price
# 1 - time to maturity (annum)
# .01 - risk free rate of interest
euro_call = BlackScholesCall(100, .3, 100, 1, .01)
euro_put = BlackScholesPut(100, .3, 100, 1, .01)
print('Call price: ', euro_call.price)
print('Put price: ', euro_put.price)
Call price:  12.361726191532611
Put price:  11.366709566449416

Option Greeks

First-order and some second-order partial derivatives of the Black-Scholes pricing model are available.

Delta

First-order partial derivative with respect to the underlying asset price.

print('Call delta: ', euro_call.delta)
print('Put delta: ', euro_put.delta)
Call delta:  0.5596176923702425
Put delta:  -0.4403823076297575

Gamma

Second-order partial derivative with respect to the underlying asset price.

print('Call gamma: ', euro_call.gamma)
print('Put gamma: ', euro_put.gamma)
Call gamma:  0.018653923079008084
Put gamma:  0.018653923079008084

Vega

First-order partial derivative with respect to the underlying asset volatility.

print('Call vega: ', euro_call.vega)
print('Put vega: ', euro_put.vega)
Call vega:  39.447933090788894
Put vega:  39.447933090788894

Theta

First-order partial derivative with respect to the time to maturity.

print('Call theta: ', euro_call.theta)
print('Put theta: ', euro_put.theta)
Call theta:  -6.35319039407325
Put theta:  -5.363140560324083

Stochastic Processes

Simulating asset paths is available using common stochastic processes.

Geometric Brownian Motion

Standard model for implementing geometric Brownian motion.

from qfin.simulations import GeometricBrownianMotion
# 100 - initial underlying asset price
# 0 - underlying asset drift (mu)
# .3 - underlying asset volatility
# 1/52 - time steps (dt)
# 1 - time to maturity (annum)
gbm = GeometricBrownianMotion(100, 0, .3, 1/52, 1)
print(gbm.simulated_path)
[107.0025048205179, 104.82320056538235, 102.53591127422398, 100.20213816642244, 102.04283245358256, 97.75115579923988, 95.19613943526382, 96.9876745495834, 97.46055174410736, 103.93032659279226, 107.36331603194304, 108.95104494118915, 112.42823319947456, 109.06981862825943, 109.10124426285238, 114.71465058375804, 120.00234814086286, 116.91730159923688, 118.67452601825876, 117.89233466917202, 118.93541257993591, 124.36106523035058, 121.26088015675688, 120.53641952983601, 113.73881043255554, 114.91724168548876, 112.94192281337791, 113.55773877160591, 107.49491796151044, 108.0715118831013, 113.01893111071472, 110.39204535739405, 108.63917240906524, 105.8520395233433, 116.2907247951675, 114.07340779267213, 111.06821275009212, 109.65530380775077, 105.78971667172465, 97.75385009989282, 97.84501925249452, 101.90695475825825, 106.0493833583297, 105.48266575656817, 106.62375752876223, 112.39829297429974, 111.22855058562658, 109.89796974828265, 112.78068777325248, 117.80550869036715, 118.4680557054793, 114.33258212280838]

Stochastic Variance Process

Stochastic volatility model based on Heston's paper (1993).

from qfin.simulations import StochasticVarianceModel
# 100 - initial underlying asset price
# 0 - underlying asset drift (mu)
# .01 - risk free rate of interest
# .05 - continuous dividend
# 2 - rate in which variance reverts to the implied long run variance
# .25 - implied long run variance as time tends to infinity
# -.7 - correlation of motion generated
# .3 - Variance's volatility
# 1/52 - time steps (dt)
# 1 - time to maturity (annum)
svm = StochasticVarianceModel(100, 0, .01, .05, 2, .25, -.7, .3, .09, 1/52, 1)
print(svm.simulated_path)
[98.21311553503577, 100.4491317019877, 89.78475515902066, 89.0169762497475, 90.70468848525869, 86.00821802256675, 80.74984494892573, 89.05033807013137, 88.51410029337134, 78.69736798230346, 81.90948751054125, 83.02502248913251, 83.46375102829755, 85.39018282900138, 78.97401642238059, 78.93505221741903, 81.33268688455111, 85.12156706038515, 79.6351983987908, 84.2375291273571, 82.80206517176038, 89.63659376223292, 89.22438477640516, 89.13899271995662, 94.60123239511816, 91.200165507022, 96.0578905115345, 87.45399399599378, 97.908745925816, 97.93068975065052, 103.32091104292813, 110.58066464778392, 105.21520242908348, 99.4655106985056, 106.74882010453683, 112.0058519886151, 110.20930861932342, 105.11835510815085, 113.59852610881678, 107.13315204738092, 108.36549026977205, 113.49809943785571, 122.67910031073885, 137.70966794451425, 146.13877267735612, 132.9973784430374, 129.75750117504984, 128.7467891695649, 127.13115959080305, 130.47967713110302, 129.84273088908265, 129.6411527208744]

Simulation Pricing

Exotic Options

Simulation pricing for exotic options is available under the assumptions associated with the respective stochastic processes. Geometric Brownian motion is the base underlying stochastic process used in each Monte Carlo simulation. However, should additional parameters be provided, the appropriate stochastic process will be used to generate each sample path.

Vanilla Options

from qfin.simulations import MonteCarloCall
from qfin.simulations import MonteCarloPut
# 100 - strike price
# 1000 - number of simulated price paths
# .01 - risk free rate of interest
# 100 - initial underlying asset price
# 0 - underlying asset drift (mu)
# .3 - underlying asset volatility
# 1/52 - time steps (dt)
# 1 - time to maturity (annum)
call_option = MonteCarloCall(100, 1000, .01, 100, 0, .3, 1/52, 1)
# These additional parameters will generate a Monte Carlo price based on a stochastic volatility process
# 2 - rate in which variance reverts to the implied long run variance
# .25 - implied long run variance as time tends to infinity
# -.5 - correlation of motion generated
# .02 - continuous dividend
# .3 - Variance's volatility
put_option = MonteCarloPut(100, 1000, .01, 100, 0, .3, 1/52, 1, 2, .25, -.5, .02, .3)
print(call_option.price)
print(put_option.price)
12.73812121792851
23.195814963576286

Binary Options

from qfin.simulations import MonteCarloBinaryCall
from qfin.simulations import MonteCarloBinaryPut
# 100 - strike price
# 50 - binary option payout
# 1000 - number of simulated price paths
# .01 - risk free rate of interest
# 100 - initial underlying asset price
# 0 - underlying asset drift (mu)
# .3 - underlying asset volatility 
# 1/52 - time steps (dt)
# 1 - time to maturity (annum)
binary_call = MonteCarloBinaryCall(100, 50, 1000, .01, 100, 0, .3, 1/52, 1)
binary_put = MonteCarloBinaryPut(100, 50, 1000, .01, 100, 0, .3, 1/52, 1)
print(binary_call.price)
print(binary_put.price)
22.42462873441866
27.869902820039087

Barrier Options

from qfin.simulations import MonteCarloBarrierCall
from qfin.simulations import MonteCarloBarrierPut
# 100 - strike price
# 50 - binary option payout
# 1000 - number of simulated price paths
# .01 - risk free rate of interest
# 100 - initial underlying asset price
# 0 - underlying asset drift (mu)
# .3 - underlying asset volatility
# 1/52 - time steps (dt)
# 1 - time to maturity (annum)
# True/False - Barrier is Up or Down
# True/False - Barrier is In or Out
barrier_call = MonteCarloBarrierCall(100, 1000, 150, .01, 100, 0, .3, 1/52, 1, up=True, out=True)
barrier_put = MonteCarloBarrierCall(100, 1000, 95, .01, 100, 0, .3, 1/52, 1, up=False, out=False)
print(binary_call.price)
print(binary_put.price)
4.895841997908933
5.565856754630819

Asian Options

from qfin.simulations import MonteCarloAsianCall
from qfin.simulations import MonteCarloAsianPut
# 100 - strike price
# 1000 - number of simulated price paths
# .01 - risk free rate of interest
# 100 - initial underlying asset price
# 0 - underlying asset drift (mu)
# .3 - underlying asset volatility
# 1/52 - time steps (dt)
# 1 - time to maturity (annum)
asian_call = MonteCarloAsianCall(100, 1000, .01, 100, 0, .3, 1/52, 1)
asian_put = MonteCarloAsianPut(100, 1000, .01, 100, 0, .3, 1/52, 1)
print(asian_call.price)
print(asian_put.price)
6.688201154529573
7.123274528125894

Extendible Options

from qfin.simulations import MonteCarloExtendibleCall
from qfin.simulations import MontecarloExtendiblePut
# 100 - strike price
# 1000 - number of simulated price paths
# .01 - risk free rate of interest
# 100 - initial underlying asset price
# 0 - underlying asset drift (mu)
# .3 - underlying asset volatility
# 1/52 - time steps (dt)
# 1 - time to maturity (annum)
# .5 - extension if out of the money at expiration
extendible_call = MonteCarloExtendibleCall(100, 1000, .01, 100, 0, .3, 1/52, 1, .5)
extendible_put = MonteCarloExtendiblePut(100, 1000, .01, 100, 0, .3, 1/52, 1, .5)
print(extendible_call.price)
print(extendible_put.price)
13.60274931789973
13.20330578685724

Futures Pricing

Owner
Roman Paolucci
Quantitative Finance, Mathematics, and Computer Science
Roman Paolucci
Python Backtesting library for trading strategies

backtrader Yahoo API Note: [2018-11-16] After some testing it would seem that data downloads can be again relied upon over the web interface (or API v

DRo 9.8k Dec 30, 2022
Performance analysis of predictive (alpha) stock factors

Alphalens Alphalens is a Python Library for performance analysis of predictive (alpha) stock factors. Alphalens works great with the Zipline open sour

Quantopian, Inc. 2.5k Dec 28, 2022
'Personal Finance' is a project where people can manage and track their expenses

Personal Finance by Abhiram Rishi Pratitpati 'Personal Finance' is a project where people can manage and track their expenses. It is hard to keep trac

Abhiram Rishi Prattipati 1 Dec 21, 2021
This repository provides all Python codes and Jupyter Notebooks of the book Python for Finance

Python for Finance (O'Reilly) This repository provides all Python codes and Jupyter Notebooks of the book Python for Finance -- Analyze Big Financial

Yves Hilpisch 1.6k Jan 03, 2023
Yahoo! Finance market data downloader (+faster Pandas Datareader)

Yahoo! Finance market data downloader Ever since Yahoo! finance decommissioned their historical data API, many programs that relied on it to stop work

Ran Aroussi 8.4k Jan 01, 2023
Supply a wrapper ``StockDataFrame`` based on the ``pandas.DataFrame`` with inline stock statistics/indicators support.

Stock Statistics/Indicators Calculation Helper VERSION: 0.3.2 Introduction Supply a wrapper StockDataFrame based on the pandas.DataFrame with inline s

Cedric Zhuang 1.1k Dec 28, 2022
personal finance tracker, written in python 3 and using the wxPython GUI toolkit.

personal finance tracker, written in python 3 and using the wxPython GUI toolkit.

wenbin wu 23 Oct 30, 2022
ARCH models in Python

arch Autoregressive Conditional Heteroskedasticity (ARCH) and other tools for financial econometrics, written in Python (with Cython and/or Numba used

Kevin Sheppard 1k Jan 04, 2023
Q-Fin: A Python library for mathematical finance.

Q-Fin A Python library for mathematical finance. Installation https://pypi.org/project/QFin/ pip install qfin Bond Pricing Option Pricing Black-Schol

Roman Paolucci 247 Jan 01, 2023
bt - flexible backtesting for Python

bt - Flexible Backtesting for Python bt is currently in alpha stage - if you find a bug, please submit an issue. Read the docs here: http://pmorissett

Philippe Morissette 1.6k Jan 05, 2023
A proper portfolio tracker. Featuring historical allocation, cash flows and real returns.

Python Portfolio Analytics A portfolio tracker featuring account transactions, historical allocation, dividends and splits management and endless perf

Simone Precicchiani 13 Aug 13, 2022
Fourth and final milestone project

Milestone Project 4: Pound Dog Click link to visit "Pound Dog" Aim of the project The aim of this project is to provide access to a website informing

Jamie Wilson 1 Oct 31, 2021
:mag_right: :chart_with_upwards_trend: :snake: :moneybag: Backtest trading strategies in Python.

Backtesting.py Backtest trading strategies with Python. Project website Documentation the project if you use it. Installation $ pip install backtestin

3.1k Dec 31, 2022
Beibo is a Python library that uses several AI prediction models to predict stocks returns over a defined period of time.

Beibo is a Python library that uses several AI prediction models to predict stocks returns over a defined period of time.

Santosh 54 Dec 10, 2022
A python wrapper for Alpha Vantage API for financial data.

alpha_vantage Python module to get stock data/cryptocurrencies from the Alpha Vantage API Alpha Vantage delivers a free API for real time financial da

Romel Torres 3.8k Jan 07, 2023
Common financial risk and performance metrics. Used by zipline and pyfolio.

empyrical Common financial risk metrics. Table of Contents Installation Usage Support Contributing Testing Installation pip install empyrical Usage S

Quantopian, Inc. 1k Dec 26, 2022
This repository contains a set of plugins for Volatility 3

volatility_plugins This repository contains a set of plugins for Volatility 3 These plugins are not compatible with Volatility 2 To use these plugins

Immersive-Labs-Sec 10 Nov 30, 2022
High-performance TensorFlow library for quantitative finance.

TF Quant Finance: TensorFlow based Quant Finance Library Table of contents Introduction Installation TensorFlow training Development roadmap Examples

Google 3.5k Jan 01, 2023
Indicator divergence library for python

Indicator divergence library This module aims to help to find bullish/bearish divergences (regular or hidden) between two indicators using argrelextre

8 Dec 13, 2022
Find big moving stocks before they move using machine learning and anomaly detection

Surpriver - Find High Moving Stocks before they Move Find high moving stocks before they move using anomaly detection and machine learning. Surpriver

Tradytics 1.5k Dec 31, 2022