Bianace Prediction Pytorch Model

Overview

Bianace Prediction Pytorch Model

Main Results

ETHUSDT from 2021-01-01 00:00:00 to 2021-12-01 00:00:00

Time interval ROI
1d (Human) 2.74%
1d (Model) 125.05%
4h (Human) 36.86%
4h (Model) 300.37%
1h (Human) 37.55%
1h (Model) 393.66%

BTCUSDT from 2021-01-01 00:00:00 to 2021-12-01 00:00:00

Time interval ROI
1d (Human) 3.11%
1d (Model) 30.08%
4h (Human) 18.30%
4h (Model) 30.67%
1h (Human) 19.79%
1h (Model) 32.07%

Getting started

Environment

  • Test OS: Ubuntu 16.04 LTS
  • Python version: 3.8

Preparation

  • Create folders.
mkdir images
mkdir checkpoints
  • Please run pip install –r requirements.txt to install the needed libraries.

Dataset

Binance Public Data

  • Clone the repo.
  • Follow the instruction to download required data.
# ETHUSDT
python download-kline.py -s ETHUSDT -startDate 2017-08-01 -endDate 2021-12-01

# BTCUSDT
python download-kline.py -s BTCUSDT -startDate 2017-08-01 -endDate 2021-12-01
  • It will download the required data as below. Unzip the zip files under the 1h, 4h and 1d directories.
binance_prediction_pytorch
    `-- binance-public-data
        `-- data
            `-- data
                `-- spot
                    |-- daily
                    `-- monthly
                        `-- klines
                            |-- ETHUSDT
                            `-- BTCUSDT
  • Then soft link the data directory to the repo root as below.
binance_prediction_pytorch
    |-- binance-public-data
    `-- data
        `-- spot
            |-- daily
            `-- monthly
                `-- klines
                    |-- ETHUSDT
                    `-- BTCUSDT

Experiments

Training

  • Run training and evaluation on ETHUSDT. It will store the checkpoints under checkpoints with ticker name and time interval if don't specify the checkpoint path with --ckpt.
# 1d
./run.sh ETHUSDT 1d

# 4h
./run.sh ETHUSDT 4h --sell_rate 0.03

# 1h
./run.sh ETHUSDT 1h --sell_rate 0.03
  • Run training and evaluation on BTCUSDT
# 1d
./run.sh BTCUSDT 1d

# 4h
./run.sh BTCUSDT 4h --sell_rate 0.03

# 1h
./run.sh BTCUSDT 1h --sell_rate 0.03

Inference

  • Specify the checkpoint path with eval mode to only do the inference.
./run.sh ETHUSDT 1h --sell_rate 0.03 --ckpt ${YOUR_CHECKPOINT_PATH} --eval
Owner
RoyYang
M.S. student @ VSLab
RoyYang
Use tensorflow to implement a Deep Neural Network for real time lane detection

LaneNet-Lane-Detection Use tensorflow to implement a Deep Neural Network for real time lane detection mainly based on the IEEE IV conference paper "To

MaybeShewill-CV 1.9k Jan 08, 2023
Solutions and questions for AoC2021. Merry christmas!

Advent of Code 2021 Merry christmas! 🎄 🎅 To get solutions and approximate execution times for implementations, please execute the run.py script in t

Wilhelm Ågren 5 Dec 29, 2022
Azion the best solution of Edge Computing in the world.

Azion Edge Function docker action Create or update an Edge Functions on Azion Edge Nodes. The domain name is the key for decision to a create or updat

8 Jul 16, 2022
Code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge.

Open Sesame This repository contains the code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge. Credits We built the project on t

9 Jul 24, 2022
An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.

NNI Doc | 简体中文 NNI (Neural Network Intelligence) is a lightweight but powerful toolkit to help users automate Feature Engineering, Neural Architecture

Microsoft 12.4k Dec 31, 2022
A mini-course offered to Undergrad chemistry students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 19 Dec 19, 2022
The open source code of SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation.

SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation(ICPR 2020) Overview This code is for the paper: Spatial Attention U-Net for Retinal V

Changlu Guo 151 Dec 28, 2022
Ganilla - Official Pytorch implementation of GANILLA

GANILLA We provide PyTorch implementation for: GANILLA: Generative Adversarial Networks for Image to Illustration Translation. Paper Arxiv Updates (Fe

Samet Hi 462 Dec 05, 2022
Code for Environment Dynamics Decomposition (ED2).

ED2 Code for Environment Dynamics Decomposition (ED2). Installation Follow the installation in MBPO and Dreamer. Usage First follow the SD2 method for

0 Aug 10, 2021
An implementation of EWC with PyTorch

EWC.pytorch An implementation of Elastic Weight Consolidation (EWC), proposed in James Kirkpatrick et al. Overcoming catastrophic forgetting in neural

Ryuichiro Hataya 166 Dec 22, 2022
MoViNets PyTorch implementation: Mobile Video Networks for Efficient Video Recognition;

MoViNet-pytorch Pytorch unofficial implementation of MoViNets: Mobile Video Networks for Efficient Video Recognition. Authors: Dan Kondratyuk, Liangzh

189 Dec 20, 2022
YKKDetector For Python

YKKDetector OpenCVを利用した機械学習データをもとに、VRChatのスクリーンショットなどからYKKさん(もとい「幽狐族のお姉様」)を検出できるソフトウェアです。 マニュアル こちらから実行環境のセットアップから解説する詳細なマニュアルをご覧いただけます。 ライセンス 本ソフトウェア

あんふぃとらいと 5 Dec 07, 2021
Implementation of Ag-Grid component for Streamlit

streamlit-aggrid AgGrid is an awsome grid for web frontend. More information in https://www.ag-grid.com/. Consider purchasing a license from Ag-Grid i

Pablo Fonseca 556 Dec 31, 2022
Supplementary code for the AISTATS 2021 paper "Matern Gaussian Processes on Graphs".

Matern Gaussian Processes on Graphs This repo provides an extension for gpflow with Matérn kernels, inducing variables and trainable models implemente

41 Dec 17, 2022
Simple, but essential Bayesian optimization package

BayesO: A Bayesian optimization framework in Python Simple, but essential Bayesian optimization package. http://bayeso.org Online documentation Instal

Jungtaek Kim 74 Dec 05, 2022
An implementation of the [Hierarchical (Sig-Wasserstein) GAN] algorithm for large dimensional Time Series Generation

Hierarchical GAN for large dimensional financial market data Implementation This repository is an implementation of the [Hierarchical (Sig-Wasserstein

11 Nov 29, 2022
Pairwise learning neural link prediction for ogb link prediction

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning

T2I_CL This is the official Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning Requirements Linux Python

42 Dec 31, 2022
Pytorch implementation of the Variational Recurrent Neural Network (VRNN).

VariationalRecurrentNeuralNetwork Pytorch implementation of the Variational RNN (VRNN), from A Recurrent Latent Variable Model for Sequential Data. Th

emmanuel 251 Dec 17, 2022
YOLOPのPythonでのONNX推論サンプル

YOLOP-ONNX-Video-Inference-Sample YOLOPのPythonでのONNX推論サンプルです。 ONNXモデルは、hustvl/YOLOP/weights を使用しています。 Requirement OpenCV 3.4.2 or later onnxruntime 1.

KazuhitoTakahashi 8 Sep 05, 2022