This repository contains the codes for LipGAN. LipGAN was published as a part of the paper titled "Towards Automatic Face-to-Face Translation".

Related tags

Text Data & NLPLipGAN
Overview

LipGAN

Generate realistic talking faces for any human speech and face identity.

[Paper] | [Project Page] | [Demonstration Video]

image

Important Update:

A new, improved work that can produce significantly more accurate and natural results on moving talking face videos is available here: https://github.com/Rudrabha/Wav2Lip


Code without MATLAB dependency is now available in fully_pythonic branch. Note that the models in both the branches are not entirely identical and either one may perform better than the other in several cases. The model used at the time of the paper's publication is with the MATLAB dependency and this is the one that has been extensively tested. Please feel free to experiment with the fully_pythonic branch if you do not want to have the MATLAB dependency. A Google Colab notebook is also available for the fully_pythonic branch. [Credits: Kirill]


Features

  • Can handle in-the-wild face poses and expressions.
  • Can handle speech in any language and is robust to background noise.
  • Paste faces back into the original video with minimal/no artefacts --- can potentially correct lip sync errors in dubbed movies!
  • Complete multi-gpu training code, pre-trained models available.
  • Fast inference code to generate results from the pre-trained models

Prerequisites

  • Python >= 3.5
  • ffmpeg: sudo apt-get install ffmpeg
  • Matlab R2016a (for audio preprocessing, this dependency will be removed in later versions)
  • Install necessary packages using pip install -r requirements.txt
  • Install keras-contrib pip install git+https://www.github.com/keras-team/keras-contrib.git

Getting the weights

Download checkpoints of the folowing models into the logs/ folder

Generating talking face videos using pretrained models (Inference)

LipGAN takes speech features in the form of MFCCs and we need to preprocess our input audio file to get the MFCC features. We use the create_mat.m script to create .mat files for a given audio.

cd matlab
matlab -nodesktop
>> create_mat(input_wav_or_mp4_file, path_to_output.mat) # replace with file paths
>> exit
cd ..

Usage #1: Generating correct lip motion on a random talking face video

Here, we are given an audio input (as .mat MFCC features) and a video of an identity speaking something entirely different. LipGAN can synthesize the correct lip motion for the given audio and overlay it on the given video of the speaking identity (Example #1, #2 in the above image).

python batch_inference.py --checkpoint_path <saved_checkpoint> --face <random_input_video> --fps <fps_of_input_video> --audio <guiding_audio_wav_file> --mat <mat_file_from_above> --results_dir <folder_to_save_generated_video>

The generated result_voice.mp4 will contain the input video lip synced with the given input audio. Note that the FPS parameter is by default 25, make sure you set the FPS correctly for your own input video.

Usage #2: Generating talking video from a single face image

Refer to example #3 in the above picture. Given an audio, LipGAN generates a correct mouth shape (viseme) at each time-step and overlays it on the input image. The sequence of generated mouth shapes yields a talking face video.

python batch_inference.py --checkpoint_path <saved_checkpoint> --face <random_input_face> --audio <guiding_audio_wav_file> --mat <mat_file_from_above> --results_dir <folder_to_save_generated_video>

Please use the --pads argument to correct for inaccurate face detections such as not covering the chin region correctly. This can improve the results further.

More options

python batch_inference.py --help

Training LipGAN

We illustrate the training pipeline using the LRS2 dataset. Adapting for other datasets would involve small modifications to the code.

Preprocess the dataset

We need to do two things: (i) Save the MFCC features from the audio and (ii) extract and save the facial crops of each frame in the video.

LRS2 dataset folder structure
data_root (mvlrs_v1)
├── main, pretrain (we use only main folder in this work)
|	├── list of folders
|	│   ├── five-digit numbered video IDs ending with (.mp4)
Saving the MFCC features

We use MATLAB to save the MFCC files for all the videos present in the dataset. Refer to the fully_pythonic branch if you do not want to use MATLAB.

# Please copy the appropriate LRS2 train split's filelist.txt to the filelists/ folder. The example below is shown for LRS2.
cd matlab
matlab -nodesktop
>> preprocess_mat('../filelists/train.txt', 'mvlrs_v1/main/') # replace with appropriate file paths for other datasets.
>> exit
cd ..
Saving the Face Crops of all Video Frames

We preprocess the video files by detecting faces using a face detector from dlib.

# Please copy the appropriate LRS2 split's filelist.txt to the filelists/ folder. Example below is shown for LRS2. 
python preprocess.py --split [train|pretrain|val] --videos_data_root mvlrs_v1/ --final_data_root <folder_to_store_preprocessed_files>

### More options while preprocessing (like number of workers, image size etc.)
python preprocess.py --help
Final preprocessed folder structure
data_root (mvlrs_v1)
├── main, pretrain (we use only main folder in this work)
|	├── list of folders
|	│   ├── folders with five-digit video IDs 
|	│   |	 ├── 0.jpg, 1.jpg .... (extracted face crops of each frame)
|	│   |	 ├── 0.npz, 1.npz .... (mfcc features corresponding to each frame)

Train the generator only

As training LipGAN is computationally intensive, you can just train the generator alone for quick, decent results.

python train_unet.py --data_root <path_to_preprocessed_dataset>

### Extensive set of training options available. Please run and refer to:
python train_unet.py --help

Train LipGAN

python train.py --data_root <path_to_preprocessed_dataset>

### Extensive set of training options available. Please run and refer to:
python train.py --help

License and Citation

The software is licensed under the MIT License. Please cite the following paper if you have use this code:

@inproceedings{KR:2019:TAF:3343031.3351066,
  author = {K R, Prajwal and Mukhopadhyay, Rudrabha and Philip, Jerin and Jha, Abhishek and Namboodiri, Vinay and Jawahar, C V},
  title = {Towards Automatic Face-to-Face Translation},
  booktitle = {Proceedings of the 27th ACM International Conference on Multimedia}, 
  series = {MM '19}, 
  year = {2019},
  isbn = {978-1-4503-6889-6},
  location = {Nice, France},
   = {1428--1436},
  numpages = {9},
  url = {http://doi.acm.org/10.1145/3343031.3351066},
  doi = {10.1145/3343031.3351066},
  acmid = {3351066},
  publisher = {ACM},
  address = {New York, NY, USA},
  keywords = {cross-language talking face generation, lip synthesis, neural machine translation, speech to speech translation, translation systems, voice transfer},
}

Acknowledgements

Part of the MATLAB code is taken from the an implementation of the Talking Face Generation implementation. We thank the authors for releasing their code.

An ultra fast tiny model for lane detection, using onnx_parser, TensorRTAPI, torch2trt to accelerate. our model support for int8, dynamic input and profiling. (Nvidia-Alibaba-TensoRT-hackathon2021)

Ultra_Fast_Lane_Detection_TensorRT An ultra fast tiny model for lane detection, using onnx_parser, TensorRTAPI to accelerate. our model support for in

steven.yan 121 Dec 27, 2022
Google AI 2018 BERT pytorch implementation

BERT-pytorch Pytorch implementation of Google AI's 2018 BERT, with simple annotation BERT 2018 BERT: Pre-training of Deep Bidirectional Transformers f

Junseong Kim 5.3k Jan 07, 2023
Code for ACL 2021 main conference paper "Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances".

Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances This repository contains the code and pre-trained mode

ICTNLP 90 Dec 27, 2022
Official Pytorch implementation of Test-Agnostic Long-Tailed Recognition by Test-Time Aggregating Diverse Experts with Self-Supervision.

This repository is the official Pytorch implementation of Test-Agnostic Long-Tailed Recognition by Test-Time Aggregating Diverse Experts with Self-Supervision.

vanint 101 Dec 30, 2022
Continuously update some NLP practice based on different tasks.

NLP_practice We will continuously update some NLP practice based on different tasks. prerequisites Software pytorch = 1.10 torchtext = 0.11.0 sklear

0 Jan 05, 2022
Meta learning algorithms to train cross-lingual NLI (multi-task) models

Meta learning algorithms to train cross-lingual NLI (multi-task) models

M.Hassan Mojab 4 Nov 20, 2022
An open collection of annotated voices in Japanese language

声庭 (Koniwa): オープンな日本語音声とアノテーションのコレクション Koniwa (声庭): An open collection of annotated voices in Japanese language 概要 Koniwa(声庭)は利用・修正・再配布が自由でオープンな音声とアノテ

Koniwa project 32 Dec 14, 2022
IMDB film review sentiment classification based on BERT's supervised learning model.

IMDB film review sentiment classification based on BERT's supervised learning model. On the other hand, the model can be extended to other natural language multi-classification tasks.

Paris 1 Apr 17, 2022
Code to reprudece NeurIPS paper: Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks

Accelerated Sparse Neural Training: A Provable and Efficient Method to FindN:M Transposable Masks Recently, researchers proposed pruning deep neural n

itay hubara 4 Feb 23, 2022
Applied Natural Language Processing in the Enterprise - An O'Reilly Media Publication

Applied Natural Language Processing in the Enterprise This is the companion repo for Applied Natural Language Processing in the Enterprise, an O'Reill

Applied Natural Language Processing in the Enterprise 95 Jan 05, 2023
Honor's thesis project analyzing whether the GPT-2 model can more effectively generate free-verse or structured poetry.

gpt2-poetry The following code is for my senior honor's thesis project, under the guidance of Dr. Keith Holyoak at the University of California, Los A

Ashley Kim 2 Jan 09, 2022
A Multilingual Latent Dirichlet Allocation (LDA) Pipeline with Stop Words Removal, n-gram features, and Inverse Stemming, in Python.

Multilingual Latent Dirichlet Allocation (LDA) Pipeline This project is for text clustering using the Latent Dirichlet Allocation (LDA) algorithm. It

Artifici Online Services inc. 74 Oct 07, 2022
Common Voice Dataset explorer

Common Voice Dataset Explorer Common Voice Dataset is by Mozilla Made during huggingface finetuning week Usage pip install -r requirements.txt streaml

Ceyda Cinarel 22 Nov 16, 2022
Recognition of 38 speech commands in russian. Based on Yandex Cup 2021 ML Challenge: ASR

Speech_38_ru_commands Recognition of 38 speech commands in russian. Based on Yandex Cup 2021 ML Challenge: ASR Программа умеет распознавать 38 ключевы

Andrey 9 May 05, 2022
PyTorch code for EMNLP 2019 paper "LXMERT: Learning Cross-Modality Encoder Representations from Transformers".

LXMERT: Learning Cross-Modality Encoder Representations from Transformers Our servers break again :(. I have updated the links so that they should wor

Hao Tan 838 Dec 19, 2022
Princeton NLP's pre-training library based on fairseq with DeepSpeed kernel integration 🚃

This repository provides a library for efficient training of masked language models (MLM), built with fairseq. We fork fairseq to give researchers mor

Princeton Natural Language Processing 92 Dec 27, 2022
Bidirectional Variational Inference for Non-Autoregressive Text-to-Speech (BVAE-TTS)

Bidirectional Variational Inference for Non-Autoregressive Text-to-Speech (BVAE-TTS) Yoonhyung Lee, Joongbo Shin, Kyomin Jung Abstract: Although early

LEE YOON HYUNG 147 Dec 05, 2022
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

1 Oct 18, 2021
A deep learning-based translation library built on Huggingface transformers

DL Translate A deep learning-based translation library built on Huggingface transformers and Facebook's mBART-Large 💻 GitHub Repository 📚 Documentat

Xing Han Lu 244 Dec 30, 2022
Code for ACL 2022 main conference paper "STEMM: Self-learning with Speech-text Manifold Mixup for Speech Translation".

STEMM: Self-learning with Speech-Text Manifold Mixup for Speech Translation This is a PyTorch implementation for the ACL 2022 main conference paper ST

ICTNLP 29 Oct 16, 2022