Code Release for ICCV 2021 (oral), "AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds"

Related tags

Deep LearningAdaFit
Overview

AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds (ICCV 2021 oral)

**Project Page | Arxiv **

Runsong Zhu¹, Yuan Liu², Zhen Dong¹, Tengping jiang¹, Yuan Wang¹, Wenping Wang³, Bisheng Yang¹.

¹Wuhan University + ²The University of Hong Kong + ³Texas A&M University.

Requirements

we conduct the experiment in the following setting:

  • Ubuntu 16.04
  • CUDA 10.1
  • Python v3.7
  • Pytorch v1.4 & torchvision v0.5.0
  • matplotlib v2.2.4
  • numpy v1.17.4
  • tensorboardX v1.9
  • scikit-learn v0.21.3
  • scipy v1.3.2
  • urllib3 v1.25.8

How to use the code

Data praparation

you need to download PCPNet dataset and place it in ./data/

single-scale AdaFit (Train + Test on PCPNet):

python run_AdaFit_single_experiment_single_scale.py

Note that, the difference between single-scale verison of our AdaFit and DeepFit is the offset-learning part, which you only need to add the following code.:

# parameter

self.conv_bias = nn.Conv1d(128, 3, 1)

# train /test 

...
bias =  self.conv_bias(x)
bias[:,:,0] = 0
points = points + bias
...

AdaFit (Train + Test on PCPNet):

python run_AdaFit_single_experiment_multi_scale.py

Acknowledgement

The code is heavily based on DeepFit.

If you find our work useful in your research, please cite our paper. And please also cite the DeepFit paper.

@article{zhu2021adafit,
  title={AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds},
  author={Zhu, Runsong and Liu, Yuan and Dong, Zhen and Jiang, Tengping and Wang, Yuan and Wang, Wenping and Yang, Bisheng},
  journal={arXiv preprint arXiv:2108.05836},
  year={2021}
}

@article{ben2020deepfit,
  title={DeepFit: 3D Surface Fitting via Neural Network Weighted Least Squares},
  author={Ben-Shabat, Yizhak and Gould, Stephen},
  journal={arXiv preprint arXiv:2003.10826},
  year={2020}
}
Code in PyTorch for the convex combination linear IAF and the Householder Flow, J.M. Tomczak & M. Welling

VAE with Volume-Preserving Flows This is a PyTorch implementation of two volume-preserving flows as described in the following papers: Tomczak, J. M.,

Jakub Tomczak 87 Dec 26, 2022
Trajectory Extraction of road users via Traffic Camera

Traffic Monitoring Citation The associated paper for this project will be published here as soon as possible. When using this software, please cite th

Julian Strosahl 14 Dec 17, 2022
This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our paper "Accounting for Gaussian Process Imprecision in Bayesian Optimization"

Prior-RObust Bayesian Optimization (PROBO) Introduction, TOC This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our

Julian Rodemann 2 Mar 19, 2022
Repository for publicly available deep learning models developed in Rosetta community

trRosetta2 This package contains deep learning models and related scripts used by Baker group in CASP14. Installation Linux/Mac clone the package git

81 Dec 29, 2022
A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking.

BeatNet A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking. This repository

Mojtaba Heydari 157 Dec 27, 2022
A selection of State Of The Art research papers (and code) on human locomotion (pose + trajectory) prediction (forecasting)

A selection of State Of The Art research papers (and code) on human trajectory prediction (forecasting). Papers marked with [W] are workshop papers.

Karttikeya Manglam 40 Nov 18, 2022
Multi-Scale Geometric Consistency Guided Multi-View Stereo

ACMM [News] The code for ACMH is released!!! [News] The code for ACMP is released!!! About ACMM is a multi-scale geometric consistency guided multi-vi

Qingshan Xu 118 Jan 04, 2023
Multi-Scale Progressive Fusion Network for Single Image Deraining

Multi-Scale Progressive Fusion Network for Single Image Deraining (MSPFN) This is an implementation of the MSPFN model proposed in the paper (Multi-Sc

Kuijiang 128 Nov 21, 2022
Pytorch implementation of our paper under review -- 1xN Pattern for Pruning Convolutional Neural Networks

1xN Pattern for Pruning Convolutional Neural Networks (paper) . This is Pytorch re-implementation of "1xN Pattern for Pruning Convolutional Neural Net

Mingbao Lin (林明宝) 29 Nov 29, 2022
Process text, including tokenizing and representing sentences as vectors and Applying some concepts like RNN, LSTM and GRU to create a classifier can detect the language in which a sentence is written from among 17 languages.

Language Identifier What is this ? The goal of this project is to create a model that is able to predict a given sentence language through text proces

Hossam Asaad 9 Dec 15, 2022
A universal framework for learning timestamp-level representations of time series

TS2Vec This repository contains the official implementation for the paper Learning Timestamp-Level Representations for Time Series with Hierarchical C

Zhihan Yue 284 Dec 30, 2022
👨‍💻 run nanosaur in simulation with Gazebo/Ingnition

🦕 👨‍💻 nanosaur_gazebo nanosaur The smallest NVIDIA Jetson dinosaur robot, open-source, fully 3D printable, based on ROS2 & Isaac ROS. Designed & ma

nanosaur 9 Jul 19, 2022
Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift

This repository contains the official code of OSTAR in "Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift" (ICLR 2022).

Matthieu Kirchmeyer 5 Dec 06, 2022
Mind the Trade-off: Debiasing NLU Models without Degrading the In-distribution Performance

Models for natural language understanding (NLU) tasks often rely on the idiosyncratic biases of the dataset, which make them brittle against test cases outside the training distribution.

Ubiquitous Knowledge Processing Lab 22 Jan 02, 2023
WSDM2022 Challenge - Large scale temporal graph link prediction

WSDM 2022 Large-scale Temporal Graph Link Prediction - Baseline and Initial Test Set WSDM Cup Website link Link to this challenge This branch offers A

Deep Graph Library 34 Dec 29, 2022
Create and implement a deep learning library from scratch.

In this project, we create and implement a deep learning library from scratch. Table of Contents Deep Leaning Library Table of Contents About The Proj

Rishabh Bali 22 Aug 23, 2022
Extremely simple and fast extreme multi-class and multi-label classifiers.

napkinXC napkinXC is an extremely simple and fast library for extreme multi-class and multi-label classification, that focus of implementing various m

Marek Wydmuch 43 Nov 14, 2022
Official Pytorch implementation of "Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral)"

Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral): Official Project Webpage This repository provides the off

Kakao Enterprise Corp. 68 Dec 17, 2022
The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies

REST The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies. Usage Download dataset Download

DMIRLAB 2 Mar 13, 2022
Deep Learning to Create StepMania SM FIles

StepCOVNet Running Audio to SM File Generator Currently only produces .txt files. Use SMDataTools to convert .txt to .sm python stepmania_note_generat

Chimezie Iwuanyanwu 8 Jan 08, 2023