PySOT - SenseTime Research platform for single object tracking, implementing algorithms like SiamRPN and SiamMask.

Overview

PySOT

PySOT is a software system designed by SenseTime Video Intelligence Research team. It implements state-of-the-art single object tracking algorithms, including SiamRPN and SiamMask. It is written in Python and powered by the PyTorch deep learning framework. This project also contains a Python port of toolkit for evaluating trackers.

PySOT has enabled research projects, including: SiamRPNDaSiamRPNSiamRPN++, and SiamMask.

Example SiamFC, SiamRPN and SiamMask outputs.

Introduction

The goal of PySOT is to provide a high-quality, high-performance codebase for visual tracking research. It is designed to be flexible in order to support rapid implementation and evaluation of novel research. PySOT includes implementations of the following visual tracking algorithms:

using the following backbone network architectures:

Additional backbone architectures may be easily implemented. For more details about these models, please see References below.

Evaluation toolkit can support the following datasets:

πŸ“Ž OTB2015 πŸ“Ž VOT16/18/19 πŸ“Ž VOT18-LT πŸ“Ž LaSOT πŸ“Ž UAV123

Model Zoo and Baselines

We provide a large set of baseline results and trained models available for download in the PySOT Model Zoo.

Installation

Please find installation instructions for PyTorch and PySOT in INSTALL.md.

Quick Start: Using PySOT

Add PySOT to your PYTHONPATH

export PYTHONPATH=/path/to/pysot:$PYTHONPATH

Download models

Download models in PySOT Model Zoo and put the model.pth in the correct directory in experiments

Webcam demo

python tools/demo.py \
    --config experiments/siamrpn_r50_l234_dwxcorr/config.yaml \
    --snapshot experiments/siamrpn_r50_l234_dwxcorr/model.pth
    # --video demo/bag.avi # (in case you don't have webcam)

Download testing datasets

Download datasets and put them into testing_dataset directory. Jsons of commonly used datasets can be downloaded from Google Drive or BaiduYun. If you want to test tracker on new dataset, please refer to pysot-toolkit to setting testing_dataset.

Test tracker

cd experiments/siamrpn_r50_l234_dwxcorr
python -u ../../tools/test.py 	\
	--snapshot model.pth 	\ # model path
	--dataset VOT2018 	\ # dataset name
	--config config.yaml	  # config file

The testing results will in the current directory(results/dataset/model_name/)

Eval tracker

assume still in experiments/siamrpn_r50_l234_dwxcorr_8gpu

python ../../tools/eval.py 	 \
	--tracker_path ./results \ # result path
	--dataset VOT2018        \ # dataset name
	--num 1 		 \ # number thread to eval
	--tracker_prefix 'model'   # tracker_name

Training πŸ”§

See TRAIN.md for detailed instruction.

Getting Help πŸ”¨

If you meet problem, try searching our GitHub issues first. We intend the issues page to be a forum in which the community collectively troubleshoots problems. But please do not post duplicate issues. If you have similar issue that has been closed, you can reopen it.

  • ModuleNotFoundError: No module named 'pysot'

🎯 Solution: Run export PYTHONPATH=path/to/pysot first before you run the code.

  • ImportError: cannot import name region

🎯 Solution: Build region by python setup.py build_ext β€”-inplace as decribled in INSTALL.md.

References

Contributors

License

PySOT is released under the Apache 2.0 license.

Owner
STVIR
SenseTime Video Intelligence Research Team
STVIR
We will see a basic program that is basically a hint to brute force attack to crack passwords. In other words, we will make a program to Crack Any Password Using Python. Show some ❀️ by starring this repository!

Crack Any Password Using Python We will see a basic program that is basically a hint to brute force attack to crack passwords. In other words, we will

Ananya Chatterjee 11 Dec 03, 2022
Read and write layered TIFF ImageSourceData and ImageResources tags

Read and write layered TIFF ImageSourceData and ImageResources tags Psdtags is a Python library to read and write the Adobe Photoshop(r) specific Imag

Christoph Gohlke 4 Feb 05, 2022
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
An implementation of Fastformer: Additive Attention Can Be All You Need in TensorFlow

Fast Transformer This repo implements Fastformer: Additive Attention Can Be All You Need by Wu et al. in TensorFlow. Fast Transformer is a Transformer

Rishit Dagli 139 Dec 28, 2022
An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow implementation of SERank model. The code is developed based on TF-Ranking.

SERank An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow

Zhihu 44 Oct 20, 2022
A python library to artfully visualize Factorio Blueprints and an interactive web demo for using it.

Factorio Blueprint Visualizer I love the game Factorio and I really like the look of factories after growing for many hours or blueprints after tweaki

Piet BrΓΆmmel 124 Jan 07, 2023
Algorithms for outlier, adversarial and drift detection

Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline d

Seldon 1.6k Dec 31, 2022
Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Accompanying code for the paper Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Kevin Wilkinghoff 6 Dec 01, 2022
Data labels and scripts for fastMRI.org

fastMRI+: Clinical pathology annotations for the fastMRI dataset The fastMRI dataset is a publicly available MRI raw (k-space) dataset. It has been us

Microsoft 51 Dec 22, 2022
Source Code for Simulations in the Publication "Can the brain use waves to solve planning problems?"

Code for Simulations in the Publication Can the brain use waves to solve planning problems? Installing Required Python Packages Please use Python vers

EMD Group 2 Jul 01, 2022
Bringing Computer Vision and Flutter together , to build an awesome app !!

Bringing Computer Vision and Flutter together , to build an awesome app !! Explore the Directories Flutter Β· Machine Learning Table of Contents About

Padmanabha Banerjee 14 Apr 07, 2022
Automatic learning-rate scheduler

AutoLRS This is the PyTorch code implementation for the paper AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on the Fly published

Yuchen Jin 33 Nov 18, 2022
Discovering Explanatory Sentences in Legal Case Decisions Using Pre-trained Language Models.

Statutory Interpretation Data Set This repository contains the data set created for the following research papers: Savelka, Jaromir, and Kevin D. Ashl

17 Dec 23, 2022
RID-Noise: Towards Robust Inverse Design under Noisy Environments

This is code of RID-Noise. Reproduce RID-Noise Results Toy tasks Please refer to the notebook ridnoise.ipynb to view experiments on three toy tasks. B

Thyrix 2 Nov 23, 2022
Object tracking implemented with YOLOv4, DeepSort, and TensorFlow.

Object tracking implemented with YOLOv4, DeepSort, and TensorFlow. YOLOv4 is a state of the art algorithm that uses deep convolutional neural networks to perform object detections. We can take the ou

The AI Guy 1.1k Dec 29, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 322 Dec 31, 2022
Code for our CVPR 2021 paper "MetaCam+DSCE"

Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification (CVPR'21) Introduction Code for our CVPR 2021

FlyingRoastDuck 59 Oct 31, 2022
Unofficial PyTorch implementation of Guided Dropout

Unofficial PyTorch implementation of Guided Dropout This is a simple implementation of Guided Dropout for research. We try to reproduce the algorithm

2 Jan 07, 2022
(NeurIPS '21 Spotlight) IQ-Learn: Inverse Q-Learning for Imitation

Inverse Q-Learning (IQ-Learn) Official code base for IQ-Learn: Inverse soft-Q Learning for Imitation, NeurIPS '21 Spotlight IQ-Learn is an easy-to-use

Divyansh Garg 102 Dec 20, 2022
Convert Apple NeuralHash model for CSAM Detection to ONNX.

Apple NeuralHash is a perceptual hashing method for images based on neural networks. It can tolerate image resize and compression.

Asuhariet Ygvar 1.5k Dec 31, 2022