Empowering journalists and whistleblowers

Overview

Onymochat

Empowering journalists and whistleblowers

Version Python Versions Release Testted_On MIT License PR's Welcome

Onymochat is an end-to-end encrypted, decentralized, anonymous chat application. You can also host your anonymous .onion webpage with Onymochat.

  • Onymochat works over the Tor.
  • Anyone can start their own chat server from their own PC.
  • It's end-to-end encrypted.
  • It's basically magic. ✨

Features

  • Start your own chat server for two or more users from your own PC.
  • Users can get connected to a chat server using the public key of the server.
  • You can launch your chat client and chat with anyone who has your public key and server details (after he/she/they joins the server).
  • You can launch your own anonymous .onion webpage with Onymochat. You can use this anonymous website for your journalistic works and whistleblowing.

You don't have to rely upon any third-party app to provide you with a platform/server to anonymously chat with your friend. You can host your own server and if the person you want to chat with has the server's public key, he/she/they can join the server with his/her/their chat client and chat with you.

Multiple people can use a single chat server. The chat data is deleted whenever the server is closed. The chat is end to end encrypted, so even if someone hacks into the server somehow, they won't be able to get to know what two people are talking about. It uses 4096 bit RSA keys for encryption. You connect to the chat server over the Tor network, which gives you anonymity.

Security

Let's see what makes Onyomochat a secure chat application:

  • End-to-end 4096 bit RSA encryption for messages.
  • Version 3 Onion Service for your .onion webpage.
  • Version 3 Onion Service for your chat server.
  • Connection to server over the Tor network.

Installation

Environment Setup

Onymochat requires Python 3.9 or above to run. I have tested it with Python 3.9. Make sure that you have Python added to your PATH. When you install Python in your Windows system, make sure to check 'Add Python 3.x to PATH'. If you forget to do it, see this tutorial to know how to add Python to your PATH for Windows.

Install Python

For Windows and Mac

Download Python 3.9 from here. Use the installer to install Python in your System. Download 'macOS 64-bit universal2 installer' for Mac OS. Download 'Windows x86-64 executable installer' for your Windows 64 Bit system and 'Windows x86 executable installer' for Windows 32 bit system.

For Linux

Use the following command to install Python 3.9 on your Linux system.

apt-get install python3.9

Check pip

Make sure you have pip installed in your system. Use the following command to check if you have pip installed.

pip --version

If you see a message like 'pip 21.2.2' then you have pip installed on your system. Otherwise, follow this tutorial to install pip in your system. Generally, Python comes with an ensurepip module, which can install pip in a Python environment.

python -m ensurepip --upgrade

Download Repository

Go to the GitHub repository of Onymochat: https://github.com/SamratDuttaOfficial/onymochat

Click on the green 'Code' button and click on 'Download ZIP' and unzip the archive somewhere to use Onymochat.

Or, use the command below if you have git installed in your system.

git clone https://github.com/SamratDuttaOfficial/onymochat

Install Requirements

Open up your terminal (CMD on Windows) and go to the folder where you've cloned/unzipped Onymochat. Example:

cd C:\User\Desktop\Onymochat-master

Then install all the requirements from the requirements.txt file.

Windows:

pip install -r requirements.txt

Linux and Mac OS:

pip3 install -r requirements.txt

If you're on Linux, you might need to install Tkinter separately in the following way:

sudo apt install python3-tk

This will install all of the requirements, except Tor.

Install Tor

Download and install Tor browser from the official Tor Project website: https://www.torproject.org/download/

Take a note of where you're installing Tor/Tor Browser, it will be required later.

How to Use

After installation, open the 'onymochat' subdirectory in your terminal. This directory should have a file like run_onymochat.py. Run this file.

python run_onymochat.py

If you are on Linux, run that file using the following command instead:

python3 run_onymochat.py

This will run the Onymochat program in your terminal. This will greet you with a menu. Just input the number of the option you want to go to, and hit the enter button.

First, configure Onymochat with Tor.

Configure Onymocaht with Tor

Run the program and go to option 0 (zero).

Then, on the next prompt, enter the path to tor.exe in the TorBrowser folder. This is important to configure Onymochat with Tor. You have to do this step only once after installation. Paste the path to tor.exe in the TorBrowser (or any similar name) folder.

Example (For Windows): C:\user\Desktop\Tor Browser\Browser\TorBrowser\Tor\tor.exe

Example (For Mac): Applications\TorBrowser.app\Tor\tor.real

Linux users just write 'tor' without the quotations.

Now you are ready to use Onymochat

Things You Can Do

Here are all the things you can do with Onymochat.

  1. Create new hidden service and chat server
  2. Generate encryption keys for chat
  3. Run chat client
  4. Create onion webpage
  5. Generate QR codes for your encryption keys
  6. Generate QR codes for other keys
  7. Delete all saved keys
  8. Exit

How to Chat?

Here are some steps you need to follow to chat with someone through Onymochat.

CAUTION: NEVER SHARE ANY OF YOUR PRIVATE KEYS WITH ANYONE

Step 1

First, select option 1 to create a new hidden service and server and follow the instructions given in your terminal/command window. This will be the server where the chat data will be temporarily saved (all chat data will be lost when the hidden service and server is closed). You can press Ctrl + C to close this hidden service and server when you are done chatting.

Then, share the hidden service public key with someone you want to chat with. You can do it in person by meeting that person, or through any other communication method. You can use the same hidden service (same public key) to chat with multiple persons but this comes with the risk of sharing the same keys with everyone, and someone might use them later to spam you. Or, the other person, with whom you want to chat with, can provide you with his/her/their hidden service public key and you can use it too.

Step 2

Select option 2 to generate encryption keys for your chat. You need to share your public key with any person you want to chat with.

Step 3

Select option 3 to run your chat client. There you won't need to create any new encryption keys for chatting if you don't want to. Creating more than one key will be very hard to manage and might be the reason of some problems in future.

You will need to enter your or the other person's hidden service and server's public key and also the other person's public key for encryption to chat with that person.

How to Create an Anonymous (.onion) Webpage

Step 1

In the 'onymochat' directory, go to the 'onion_webpage' directory. Edit the index.html HTML according to your preference. This will be the page for your anonymous webpage.

Step 2

Select option 4 from the main menu. You can generate a new URL for your .onion webpage and save the private key of that webpage to resume the webpage later with the same URL. Or, you can use a pre-saved private key to resume your website with a particular URL you've generated before.

Generate QR Codes for Encryption Keys

Option 5, and 6 is to generate QR codes for different keys used in Onymochat. These QR codes are saved in \files\qr_codes. You can print them and share them with other people you want to communicate with.

Delete all saved keys and QR codes

Use option 7 to delete all saved public and private keys and QR codes from your system. Use this option only when you suspect a security breach.

Exit Program

Exit the program by selecting option 8 from the main menu.


Author

Created by Samrat Dutta

Github: https://github.com/SamratDuttaOfficial

Linkedin: https://www.linkedin.com/in/SamratDuttaOfficial

Buy me a coffee: https://www.buymeacoffee.com/SamratDutta


Github

Please visit the Github repository to download Onymochat and see a quick tutorial.

https://github.com/SamratDuttaOfficial/onymochat

Pull requests are always welcome.

Owner
Samrat Dutta
Developer, designer, writer. Developer of CoWiseCare.
Samrat Dutta
This is a template for the Non-autoregressive Deep Learning-Based TTS model (in PyTorch).

Non-autoregressive Deep Learning-Based TTS Template This is a template for the Non-autoregressive TTS model. It contains Data Preprocessing Pipeline D

Keon Lee 13 Dec 05, 2022
Pytorch implementation of "Neural Wireframe Renderer: Learning Wireframe to Image Translations"

Neural Wireframe Renderer: Learning Wireframe to Image Translations Pytorch implementation of ideas from the paper Neural Wireframe Renderer: Learning

Yuan Xue 7 Nov 14, 2022
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut

Meta Research 3.7k Jan 02, 2023
Implicit Model Specialization through DAG-based Decentralized Federated Learning

Federated Learning DAG Experiments This repository contains software artifacts to reproduce the experiments presented in the Middleware '21 paper "Imp

Operating Systems and Middleware Group 5 Oct 16, 2022
Code for CVPR2019 Towards Natural and Accurate Future Motion Prediction of Humans and Animals

Motion prediction with Hierarchical Motion Recurrent Network Introduction This work concerns motion prediction of articulate objects such as human, fi

Shuang Wu 85 Dec 11, 2022
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
Paper: De-rendering Stylized Texts

Paper: De-rendering Stylized Texts Wataru Shimoda1, Daichi Haraguchi2, Seiichi Uchida2, Kota Yamaguchi1 1CyberAgent.Inc, 2 Kyushu University Accepted

CyberAgent AI Lab 55 Dec 18, 2022
Codes and scripts for "Explainable Semantic Space by Grounding Languageto Vision with Cross-Modal Contrastive Learning"

Visually Grounded Bert Language Model This repository is the official implementation of Explainable Semantic Space by Grounding Language to Vision wit

17 Dec 17, 2022
Research code for the paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models"

Introduction This repository contains research code for the ACL 2021 paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual

AdapterHub 20 Aug 04, 2022
In this project, two programs can help you take full agvantage of time on the model training with a remote server

In this project, two programs can help you take full agvantage of time on the model training with a remote server, which can push notification to your phone about the information during model trainin

GrayLee 8 Dec 27, 2022
FcaNet: Frequency Channel Attention Networks

FcaNet: Frequency Channel Attention Networks PyTorch implementation of the paper "FcaNet: Frequency Channel Attention Networks". Simplest usage Models

327 Dec 27, 2022
SNE-RoadSeg in PyTorch, ECCV 2020

SNE-RoadSeg Introduction This is the official PyTorch implementation of SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentati

242 Dec 20, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

High performance distributed framework for training deep learning recommendation models based on PyTorch.

340 Dec 30, 2022
Instance Semantic Segmentation List

Instance Semantic Segmentation List This repository contains lists of state-or-art instance semantic segmentation works. Papers and resources are list

bighead 87 Mar 06, 2022
SIEM Logstash parsing for more than hundred technologies

LogIndexer Pipeline Logstash Parsing Configurations for Elastisearch SIEM and OpenDistro for Elasticsearch SIEM Why this project exists The overhead o

146 Dec 29, 2022
This is an official implementation for "DeciWatch: A Simple Baseline for 10x Efficient 2D and 3D Pose Estimation"

DeciWatch: A Simple Baseline for 10Γ— Efficient 2D and 3D Pose Estimation This repo is the official implementation of "DeciWatch: A Simple Baseline for

117 Dec 24, 2022
The mini-AlphaStar (mini-AS, or mAS) - mini-scale version (non-official) of the AlphaStar (AS)

A mini-scale reproduction code of the AlphaStar program. Note: the original AlphaStar is the AI proposed by DeepMind to play StarCraft II.

Ruo-Ze Liu 216 Jan 04, 2023
This program uses trial auth token of Azure Cognitive Services to do speech synthesis for you.

πŸ—£οΈ aspeak A simple text-to-speech client using azure TTS API(trial). πŸ˜† TL;DR: This program uses trial auth token of Azure Cognitive Services to do s

Levi Zim 359 Jan 05, 2023
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | δΈ­ζ–‡ Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

flow-dev 2 Aug 21, 2022
A font family with a great monospaced variant for programmers.

Fantasque Sans Mono A programming font, designed with functionality in mind, and with some wibbly-wobbly handwriting-like fuzziness that makes it unas

Jany Belluz 6.3k Jan 08, 2023