Simple yet flexible natural sorting in Python.

Overview

natsort

Simple yet flexible natural sorting in Python.

NOTE: Please see the Deprecation Schedule section for changes in natsort version 7.0.0.

Quick Description

When you try to sort a list of strings that contain numbers, the normal python sort algorithm sorts lexicographically, so you might not get the results that you expect:

>>> a = ['2 ft 7 in', '1 ft 5 in', '10 ft 2 in', '2 ft 11 in', '7 ft 6 in']
>>> sorted(a)
['1 ft 5 in', '10 ft 2 in', '2 ft 11 in', '2 ft 7 in', '7 ft 6 in']

Notice that it has the order ('1', '10', '2') - this is because the list is being sorted in lexicographical order, which sorts numbers like you would letters (i.e. 'b', 'ba', 'c').

natsort provides a function natsorted that helps sort lists "naturally" ("naturally" is rather ill-defined, but in general it means sorting based on meaning and not computer code point). Using natsorted is simple:

>>> from natsort import natsorted
>>> a = ['2 ft 7 in', '1 ft 5 in', '10 ft 2 in', '2 ft 11 in', '7 ft 6 in']
>>> natsorted(a)
['1 ft 5 in', '2 ft 7 in', '2 ft 11 in', '7 ft 6 in', '10 ft 2 in']

natsorted identifies numbers anywhere in a string and sorts them naturally. Below are some other things you can do with natsort (also see the examples for a quick start guide, or the api for complete details).

Note: natsorted is designed to be a drop-in replacement for the built-in sorted function. Like sorted, natsorted does not sort in-place. To sort a list and assign the output to the same variable, you must explicitly assign the output to a variable:

>>> a = ['2 ft 7 in', '1 ft 5 in', '10 ft 2 in', '2 ft 11 in', '7 ft 6 in']
>>> natsorted(a)
['1 ft 5 in', '2 ft 7 in', '2 ft 11 in', '7 ft 6 in', '10 ft 2 in']
>>> print(a)  # 'a' was not sorted; "natsorted" simply returned a sorted list
['2 ft 7 in', '1 ft 5 in', '10 ft 2 in', '2 ft 11 in', '7 ft 6 in']
>>> a = natsorted(a)  # Now 'a' will be sorted because the sorted list was assigned to 'a'
>>> print(a)
['1 ft 5 in', '2 ft 7 in', '2 ft 11 in', '7 ft 6 in', '10 ft 2 in']

Please see Generating a Reusable Sorting Key and Sorting In-Place for an alternate way to sort in-place naturally.

Quick Examples

Sorting Versions

natsort does not actually comprehend version numbers. It just so happens that the most common versioning schemes are designed to work with standard natural sorting techniques; these schemes include MAJOR.MINOR, MAJOR.MINOR.PATCH, YEAR.MONTH.DAY. If your data conforms to a scheme like this, then it will work out-of-the-box with natsorted (as of natsort version >= 4.0.0):

>>> a = ['version-1.9', 'version-2.0', 'version-1.11', 'version-1.10']
>>> natsorted(a)
['version-1.9', 'version-1.10', 'version-1.11', 'version-2.0']

If you need to versions that use a more complicated scheme, please see these examples.

Sort Paths Like My File Browser (e.g. Windows Explorer on Windows)

Prior to natsort version 7.1.0, it was a common request to be able to sort paths like Windows Explorer. As of natsort 7.1.0, the function os_sorted has been added to provide users the ability to sort in the order that their file browser might sort (e.g Windows Explorer on Windows, Finder on MacOS, Dolphin/Nautilus/Thunar/etc. on Linux).

import os
from natsort import os_sorted
print(os_sorted(os.listdir()))
# The directory sorted like your file browser might show

Output will be different depending on the operating system you are on.

For users not on Windows (e.g. MacOS/Linux) it is strongly recommended to also install PyICU, which will help natsort give results that match most file browsers. If this is not installed, it will fall back on Python's built-in locale module and will give good results for most input, but will give poor restuls for special characters.

Sorting by Real Numbers (i.e. Signed Floats)

This is useful in scientific data analysis (and was the default behavior of natsorted for natsort version < 4.0.0). Use the realsorted function:

>>> from natsort import realsorted, ns
>>> # Note that when interpreting as signed floats, the below numbers are
>>> #            +5.10,                -3.00,            +5.30,              +2.00
>>> a = ['position5.10.data', 'position-3.data', 'position5.3.data', 'position2.data']
>>> natsorted(a)
['position2.data', 'position5.3.data', 'position5.10.data', 'position-3.data']
>>> natsorted(a, alg=ns.REAL)
['position-3.data', 'position2.data', 'position5.10.data', 'position5.3.data']
>>> realsorted(a)  # shortcut for natsorted with alg=ns.REAL
['position-3.data', 'position2.data', 'position5.10.data', 'position5.3.data']

Locale-Aware Sorting (or "Human Sorting")

This is where the non-numeric characters are also ordered based on their meaning, not on their ordinal value, and a locale-dependent thousands separator and decimal separator is accounted for in the number. This can be achieved with the humansorted function:

>>> a = ['Apple', 'apple15', 'Banana', 'apple14,689', 'banana']
>>> natsorted(a)
['Apple', 'Banana', 'apple14,689', 'apple15', 'banana']
>>> import locale
>>> locale.setlocale(locale.LC_ALL, 'en_US.UTF-8')
'en_US.UTF-8'
>>> natsorted(a, alg=ns.LOCALE)
['apple15', 'apple14,689', 'Apple', 'banana', 'Banana']
>>> from natsort import humansorted
>>> humansorted(a)  # shortcut for natsorted with alg=ns.LOCALE
['apple15', 'apple14,689', 'Apple', 'banana', 'Banana']

You may find you need to explicitly set the locale to get this to work (as shown in the example). Please see locale issues and the Optional Dependencies section below before using the humansorted function.

Further Customizing Natsort

If you need to combine multiple algorithm modifiers (such as ns.REAL, ns.LOCALE, and ns.IGNORECASE), you can combine the options using the bitwise OR operator (|). For example,

>>> a = ['Apple', 'apple15', 'Banana', 'apple14,689', 'banana']
>>> natsorted(a, alg=ns.REAL | ns.LOCALE | ns.IGNORECASE)
['Apple', 'apple15', 'apple14,689', 'Banana', 'banana']
>>> # The ns enum provides long and short forms for each option.
>>> ns.LOCALE == ns.L
True
>>> # You can also customize the convenience functions, too.
>>> natsorted(a, alg=ns.REAL | ns.LOCALE | ns.IGNORECASE) == realsorted(a, alg=ns.L | ns.IC)
True
>>> natsorted(a, alg=ns.REAL | ns.LOCALE | ns.IGNORECASE) == humansorted(a, alg=ns.R | ns.IC)
True

All of the available customizations can be found in the documentation for the ns enum.

You can also add your own custom transformation functions with the key argument. These can be used with alg if you wish.

>>> a = ['apple2.50', '2.3apple']
>>> natsorted(a, key=lambda x: x.replace('apple', ''), alg=ns.REAL)
['2.3apple', 'apple2.50']

Sorting Mixed Types

You can mix and match int, float, and str (or unicode) types when you sort:

>>> a = ['4.5', 6, 2.0, '5', 'a']
>>> natsorted(a)
[2.0, '4.5', '5', 6, 'a']
>>> # On Python 2, sorted(a) would return [2.0, 6, '4.5', '5', 'a']
>>> # On Python 3, sorted(a) would raise an "unorderable types" TypeError

Handling Bytes on Python 3

natsort does not officially support the bytes type on Python 3, but convenience functions are provided that help you decode to str first:

>>> from natsort import as_utf8
>>> a = [b'a', 14.0, 'b']
>>> # On Python 2, natsorted(a) would would work as expected.
>>> # On Python 3, natsorted(a) would raise a TypeError (bytes() < str())
>>> natsorted(a, key=as_utf8) == [14.0, b'a', 'b']
True
>>> a = [b'a56', b'a5', b'a6', b'a40']
>>> # On Python 2, natsorted(a) would would work as expected.
>>> # On Python 3, natsorted(a) would return the same results as sorted(a)
>>> natsorted(a, key=as_utf8) == [b'a5', b'a6', b'a40', b'a56']
True

Generating a Reusable Sorting Key and Sorting In-Place

Under the hood, natsorted works by generating a custom sorting key using natsort_keygen and then passes that to the built-in sorted. You can use the natsort_keygen function yourself to generate a custom sorting key to sort in-place using the list.sort method.

>>> from natsort import natsort_keygen
>>> natsort_key = natsort_keygen()
>>> a = ['2 ft 7 in', '1 ft 5 in', '10 ft 2 in', '2 ft 11 in', '7 ft 6 in']
>>> natsorted(a) == sorted(a, key=natsort_key)
True
>>> a.sort(key=natsort_key)
>>> a
['1 ft 5 in', '2 ft 7 in', '2 ft 11 in', '7 ft 6 in', '10 ft 2 in']

All of the algorithm customizations mentioned in the Further Customizing Natsort section can also be applied to natsort_keygen through the alg keyword option.

Other Useful Things

FAQ

How do I debug natsort.natsorted()?

The best way to debug natsorted() is to generate a key using natsort_keygen() with the same options being passed to natsorted. One can take a look at exactly what is being done with their input using this key - it is highly recommended to look at this issue describing how to debug for how to debug, and also to review the How Does Natsort Work? page for why natsort is doing that to your data.

If you are trying to sort custom classes and running into trouble, please take a look at https://github.com/SethMMorton/natsort/issues/60. In short, custom classes are not likely to be sorted correctly if one relies on the behavior of __lt__ and the other rich comparison operators in their custom class - it is better to use a key function with natsort, or use the natsort key as part of your rich comparison operator definition.

natsort gave me results I didn't expect, and it's a terrible library!
Did you try to debug using the above advice? If so, and you still cannot figure out the error, then please file an issue.
How does natsort work?

If you don't want to read How Does Natsort Work?, here is a quick primer.

natsort provides a key function that can be passed to list.sort() or sorted() in order to modify the default sorting behavior. This key is generated on-demand with the key generator natsort.natsort_keygen(). natsort.natsorted() is essentially a wrapper for the following code:

>>> from natsort import natsort_keygen
>>> natsort_key = natsort_keygen()
>>> sorted(['1', '10', '2'], key=natsort_key)
['1', '2', '10']

Users can further customize natsort sorting behavior with the key and/or alg options (see details in the Further Customizing Natsort section).

The key generated by natsort_keygen always returns a tuple. It does so in the following way (some details omitted for clarity):

  1. Assume the input is a string, and attempt to split it into numbers and non-numbers using regular expressions. Numbers are then converted into either int or float.
  2. If the above fails because the input is not a string, assume the input is some other sequence (e.g. list or tuple), and recursively apply the key to each element of the sequence.
  3. If the above fails because the input is not iterable, assume the input is an int or float, and just return the input in a tuple.

Because a tuple is always returned, a TypeError should not be common unless one tries to do something odd like sort an int against a list.

Shell script

natsort comes with a shell script called natsort, or can also be called from the command line with python -m natsort.

Requirements

natsort requires Python 3.5 or greater. Python 3.4 is unofficially supported, meaning that support has not been removed, but it is no longer tested.

Optional Dependencies

fastnumbers

The most efficient sorting can occur if you install the fastnumbers package (version >=2.0.0); it helps with the string to number conversions. natsort will still run (efficiently) without the package, but if you need to squeeze out that extra juice it is recommended you include this as a dependency. natsort will not require (or check) that fastnumbers is installed at installation.

PyICU

It is recommended that you install PyICU if you wish to sort in a locale-dependent manner, see https://natsort.readthedocs.io/en/master/locale_issues.html for an explanation why.

Installation

Use pip!

$ pip install natsort

If you want to install the Optional Dependencies, you can use the "extras" notation at installation time to install those dependencies as well - use fast for fastnumbers and icu for PyICU.

# Install both optional dependencies.
$ pip install natsort[fast,icu]
# Install just fastnumbers
$ pip install natsort[fast]

How to Run Tests

Please note that natsort is NOT set-up to support python setup.py test.

The recommended way to run tests is with tox. After installing tox, running tests is as simple as executing the following in the natsort directory:

$ tox

tox will create virtual a virtual environment for your tests and install all the needed testing requirements for you. You can specify a particular python version with the -e flag, e.g. tox -e py36. Static analysis is done with tox -e flake8. You can see all available testing environments with tox --listenvs.

If you do not wish to use tox, you can install the testing dependencies with the dev/requirements.txt file and then run the tests manually using pytest.

$ pip install -r dev/requirements.txt
$ python -m pytest

Note that above I invoked python -m pytest instead of just pytest - this is because the former puts the CWD on sys.path.

How to Build Documentation

If you want to build the documentation for natsort, it is recommended to use tox:

$ tox -e docs

This will place the documentation in build/sphinx/html. If you do not which to use tox, you can do the following:

$ pip install sphinx sphinx_rtd_theme
$ python setup.py build_sphinx

Deprecation Schedule

Dropped Python 2.7 Support

natsort version 7.0.0 dropped support for Python 2.7.

The version 6.X branch will remain as a "long term support" branch where bug fixes are applied so that users who cannot update from Python 2.7 will not be forced to use a buggy natsort version (bug fixes will need to be requested; by default only the 7.X branch will be updated). New features would not be added to version 6.X, only bug fixes.

Dropped Deprecated APIs

In natsort version 6.0.0, the following APIs and functions were removed

  • number_type keyword argument (deprecated since 3.4.0)
  • signed keyword argument (deprecated since 3.4.0)
  • exp keyword argument (deprecated since 3.4.0)
  • as_path keyword argument (deprecated since 3.4.0)
  • py3_safe keyword argument (deprecated since 3.4.0)
  • ns.TYPESAFE (deprecated since version 5.0.0)
  • ns.DIGIT (deprecated since version 5.0.0)
  • ns.VERSION (deprecated since version 5.0.0)
  • versorted() (discouraged since version 4.0.0, officially deprecated since version 5.5.0)
  • index_versorted() (discouraged since version 4.0.0, officially deprecated since version 5.5.0)

In general, if you want to determine if you are using deprecated APIs you can run your code with the following flag

$ python -Wdefault::DeprecationWarning my-code.py

By default DeprecationWarnings are not shown, but this will cause them to be shown. Alternatively, you can just set the environment variable PYTHONWARNINGS to "default::DeprecationWarning" and then run your code.

Author

Seth M. Morton

History

Please visit the changelog on GitHub or in the documentation.

Tindicators is a Python library to calculate the values of various technical indicators

Tindicators is a Python library to calculate the values of various technical indicators

omar 3 Mar 03, 2022
Meaningful and minimalist release notes for developers

Managing manual release notes is hard. Therefore, everyone tends to generate release notes from commit messages. But, you won't get a meaningful release note at the end.

codezri 31 Dec 30, 2022
Análise do Aplicativo Prévias PSDB 2021

Análise do Aplicativo Prévias PSDB 2021 Com a recente polêmica sobre o aplicativo usado nas Prévias do PSDB de 2021, fiquei curioso para saber como er

Paulo Matias 18 Jul 31, 2022
E-Paper display loop with plugins

PaperPi V3 NOTE This version of PaperPi is under heavy development and is not ready for the average user. We are working on adding more screen compati

Aaron Ciuffo 34 Dec 30, 2022
Strawberry Benchmark With Python

Strawberry benchmarks these benchmarks have been made to compare the performance of dataloaders and joined database queries. How to use You can run th

Doctor 4 Feb 23, 2022
This repository is an archive of emails that are sent by the awesome Quincy Larson every week.

Awesome Quincy Larson Email Archive This repository is an archive of emails that are sent by the awesome Quincy Larson every week. If you fi

Sourabh Joshi 912 Jan 05, 2023
*考研学习利器,玩电脑控制不住自己时,可以使用该程序定日期锁屏,同时有精美壁纸锁屏显示,也不会枯燥。

LockscreenbyTime_win10 A python program in win10. You can set the time to lock the computer(by setting year, month, day), Fullscreen pictures will sho

PixianDouban 4 Jul 10, 2022
NeoInterface - Neo4j made easy for Python programmers!

Neointerface - Neo4j made easy for Python programmers! A Python interface to use the Neo4j graph database, and simplify its use. class NeoInterface: C

15 Dec 15, 2022
Defichain maxi - Scripts to optimize performance on defichain rewards

defichain_maxi This script is made to optimize your defichain vault rewards by m

kuegi 75 Dec 31, 2022
A python script to simplify recompiling, signing and installing reverse engineered android apps.

urszi.py A python script to simplify the Uninstall Recompile Sign Zipalign Install cycle when reverse engineering Android applications. It checks if d

Ahmed Harmouche 4 Jun 24, 2022
use Notepad++ for real-time sync after python appending new log text

FTP远程log同步工具 使用Notepad++配合来获取实时更新的log文档效果 适用于FTP协议的log远程同步工具,配合MT管理器开启FTP服务器使用,通过Notepad++监听文本变化,更便捷的使用电脑查看方法注入打印后的信息 功能 过滤器 对每行要打印的文本使用回调函数筛选,支持链式调用

Liuhaixv 1 Oct 17, 2021
NeurIPS'19: Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting (Pytorch implementation for noisy labels).

Meta-Weight-Net NeurIPS'19: Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting (Official Pytorch implementation for noisy labels). The

243 Jan 03, 2023
Something like Asteroids but not really, done in CircuitPython

CircuitPython Staroids Something like Asteroids, done in CircuitPython. Works with FunHouse, MacroPad, Pybadge, EdgeBadge, CLUE, and Pygamer. circuitp

Tod E. Kurt 14 May 31, 2022
Python Library to get fast extensive Dummy Data for testing

Dumda Python Library to get fast extensive Dummy Data for testing https://pypi.org/project/dumda/ Installation pip install dumda Usage: Cities from d

Oliver B. 0 Dec 27, 2021
Web-based Sudoku solver built using Python. A demonstration of how backtracking works.

Sudoku Solver A web-based Sudoku solver built using Python and Python only The motivation is to demonstrate how Backtracking algorithm works. Some of

Jerry Ng 2 Dec 31, 2022
An assistant to guess your pip dependencies from your code, without using a requirements file.

Pip Sala Bim is an assistant to guess your pip dependencies from your code, without using a requirements file. Pip Sala Bim will tell you which packag

Collage Labs 15 Nov 19, 2022
3x - This Is 3x Friendlist Cloner Tools

3X FRIENDLIST CLONER TOOLS COMMAND $ apt update $ apt upgrade $ apt install pyth

MAHADI HASAN AFRIDI 2 Jan 17, 2022
- Auto join teams teams ( from calendar invite )

Auto Join Teams Meetings Requirements: Python 3.7 or higher Latest Google Chrome This script automatically logins to your account and joins the meetin

Prajin Khadka 10 Aug 20, 2022
Install JetBrains Toolbox

ansible-role-jetbrains-toolbox Install JetBrains Toolbox Example Playbook This example is taken from molecule/default/converge.yml and is tested on ea

Antoine Mace 2 Feb 04, 2022