基于Flask开发后端、VUE开发前端框架,在WEB端部署YOLOv5目标检测模型

Overview

1. 效果:

视频链接:

https://www.bilibili.com/video/BV1Wr4y1K7Sh

最终效果:

在这里插入图片描述

源码已经上传 Github:

https://github.com/Sharpiless/Yolov5-Flask-VUE

2. YOLOv5模型训练:

训练自己的数据集可以看我这篇博客:

【小白CV】手把手教你用YOLOv5训练自己的数据集(从Windows环境配置到模型部署)

这里演示的话我就用官方训练好的 yolov5m.pt 模型。

3. YOLOv5模型预测:

预测接口:

import torch
import numpy as np
from models.experimental import attempt_load
from utils.general import non_max_suppression, scale_coords, letterbox
from utils.torch_utils import select_device
import cv2
from random import randint


class Detector(object):

    def __init__(self):
        self.img_size = 640
        self.threshold = 0.4
        self.max_frame = 160
        self.init_model()

    def init_model(self):

        self.weights = 'weights/yolov5m.pt'
        self.device = '0' if torch.cuda.is_available() else 'cpu'
        self.device = select_device(self.device)
        model = attempt_load(self.weights, map_location=self.device)
        model.to(self.device).eval()
        model.half()
        # torch.save(model, 'test.pt')
        self.m = model
        self.names = model.module.names if hasattr(
            model, 'module') else model.names
        self.colors = [
            (randint(0, 255), randint(0, 255), randint(0, 255)) for _ in self.names
        ]

    def preprocess(self, img):

        img0 = img.copy()
        img = letterbox(img, new_shape=self.img_size)[0]
        img = img[:, :, ::-1].transpose(2, 0, 1)
        img = np.ascontiguousarray(img)
        img = torch.from_numpy(img).to(self.device)
        img = img.half()  # 半精度
        img /= 255.0  # 图像归一化
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        return img0, img

    def plot_bboxes(self, image, bboxes, line_thickness=None):
        tl = line_thickness or round(
            0.002 * (image.shape[0] + image.shape[1]) / 2) + 1  # line/font thickness
        for (x1, y1, x2, y2, cls_id, conf) in bboxes:
            color = self.colors[self.names.index(cls_id)]
            c1, c2 = (x1, y1), (x2, y2)
            cv2.rectangle(image, c1, c2, color,
                          thickness=tl, lineType=cv2.LINE_AA)
            tf = max(tl - 1, 1)  # font thickness
            t_size = cv2.getTextSize(
                cls_id, 0, fontScale=tl / 3, thickness=tf)[0]
            c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
            cv2.rectangle(image, c1, c2, color, -1, cv2.LINE_AA)  # filled
            cv2.putText(image, '{} ID-{:.2f}'.format(cls_id, conf), (c1[0], c1[1] - 2), 0, tl / 3,
                        [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
        return image

    def detect(self, im):

        im0, img = self.preprocess(im)

        pred = self.m(img, augment=False)[0]
        pred = pred.float()
        pred = non_max_suppression(pred, self.threshold, 0.3)

        pred_boxes = []
        image_info = {}
        count = 0
        for det in pred:
            if det is not None and len(det):
                det[:, :4] = scale_coords(
                    img.shape[2:], det[:, :4], im0.shape).round()

                for *x, conf, cls_id in det:
                    lbl = self.names[int(cls_id)]
                    x1, y1 = int(x[0]), int(x[1])
                    x2, y2 = int(x[2]), int(x[3])
                    pred_boxes.append(
                        (x1, y1, x2, y2, lbl, conf))
                    count += 1
                    key = '{}-{:02}'.format(lbl, count)
                    image_info[key] = ['{}×{}'.format(
                        x2-x1, y2-y1), np.round(float(conf), 3)]

        im = self.plot_bboxes(im, pred_boxes)
        return im, image_info

处理完保存到服务器本地临时的目录下:

import os

def pre_process(data_path):
    file_name = os.path.split(data_path)[1].split('.')[0]
    return data_path, file_name
import cv2

def predict(dataset, model, ext):
    global img_y
    x = dataset[0].replace('\\', '/')
    file_name = dataset[1]
    print(x)
    print(file_name)
    x = cv2.imread(x)
    img_y, image_info = model.detect(x)
    cv2.imwrite('./tmp/draw/{}.{}'.format(file_name, ext), img_y)
    return image_info
from core import process, predict


def c_main(path, model, ext):
    image_data = process.pre_process(path)
    image_info = predict.predict(image_data, model, ext)

    return image_data[1] + '.' + ext, image_info


if __name__ == '__main__':
    pass

4. Flask 部署:

然后通过Flask框架写相应函数:

@app.route('/upload', methods=['GET', 'POST'])
def upload_file():
    file = request.files['file']
    print(datetime.datetime.now(), file.filename)
    if file and allowed_file(file.filename):
        src_path = os.path.join(app.config['UPLOAD_FOLDER'], file.filename)
        file.save(src_path)
        shutil.copy(src_path, './tmp/ct')
        image_path = os.path.join('./tmp/ct', file.filename)
        pid, image_info = core.main.c_main(
            image_path, current_app.model, file.filename.rsplit('.', 1)[1])
        return jsonify({'status': 1,
                        'image_url': 'http://127.0.0.1:5003/tmp/ct/' + pid,
                        'draw_url': 'http://127.0.0.1:5003/tmp/draw/' + pid,
                        'image_info': image_info})

    return jsonify({'status': 0})

这样前端发出POST请求时,会对上传的图像进行处理。

5. VUE前端:

主要是通过VUE编写前端WEB框架。

核心前后端交互代码:

	// 上传文件
    update(e) {
      this.percentage = 0;
      this.dialogTableVisible = true;
      this.url_1 = "";
      this.url_2 = "";
      this.srcList = [];
      this.srcList1 = [];
      this.wait_return = "";
      this.wait_upload = "";
      this.feature_list = [];
      this.feat_list = [];
      this.fullscreenLoading = true;
      this.loading = true;
      this.showbutton = false;
      let file = e.target.files[0];
      this.url_1 = this.$options.methods.getObjectURL(file);
      let param = new FormData(); //创建form对象
      param.append("file", file, file.name); //通过append向form对象添加数据
      var timer = setInterval(() => {
        this.myFunc();
      }, 30);
      let config = {
        headers: { "Content-Type": "multipart/form-data" },
      }; //添加请求头
      axios
        .post(this.server_url + "/upload", param, config)
        .then((response) => {
          this.percentage = 100;
          clearInterval(timer);
          this.url_1 = response.data.image_url;
          this.srcList.push(this.url_1);
          this.url_2 = response.data.draw_url;
          this.srcList1.push(this.url_2);
          this.fullscreenLoading = false;
          this.loading = false;

          this.feat_list = Object.keys(response.data.image_info);

          for (var i = 0; i < this.feat_list.length; i++) {
            response.data.image_info[this.feat_list[i]][2] = this.feat_list[i];
            this.feature_list.push(response.data.image_info[this.feat_list[i]]);
          }

          this.feature_list.push(response.data.image_info);
          this.feature_list_1 = this.feature_list[0];
          this.dialogTableVisible = false;
          this.percentage = 0;
          this.notice1();
        });
    },

这段代码在点击提交图片时响应:

		<div slot="header" class="clearfix">
            <span>检测目标span>
            <el-button
              style="margin-left: 35px"
              v-show="!showbutton"
              type="primary"	
              icon="el-icon-upload"
              class="download_bt"
              v-on:click="true_upload2"
            >
              重新选择图像
              <input
                ref="upload2"
                style="display: none"
                name="file"
                type="file"
                @change="update"
              />
            el-button>
          div>

6. 启动项目:

在 Flask 后端项目下启动后端代码:

python app.py

在 VUE 前端项目下,先安装依赖:

npm install

然后运行前端:

npm run serve

然后在浏览器打开localhost即可:

在这里插入图片描述

关注我的公众号:

感兴趣的同学关注我的公众号——可达鸭的深度学习教程:

在这里插入图片描述

Owner
BIT可达鸭
Code for the AAAI-2022 paper: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification (AAAI 2022) Prerequisite PyTorch = 1.2.0 P

16 Dec 14, 2022
Hierarchical User Intent Graph Network for Multimedia Recommendation

Hierarchical User Intent Graph Network for Multimedia Recommendation This is our Pytorch implementation for the paper: Hierarchical User Intent Graph

6 Jan 05, 2023
This game was designed to encourage young people not to gamble on lotteries, as the probablity of correctly guessing the number is infinitesimal!

Lottery Simulator 2022 for Web Launch Application Developed by John Seong in Ontario. This game was designed to encourage young people not to gamble o

John Seong 2 Sep 02, 2022
Construct a neural network frame by Numpy

本项目的CSDN博客链接:https://blog.csdn.net/weixin_41578567/article/details/111482022 1. 概览 本项目主要用于神经网络的学习,通过基于numpy的实现,了解神经网络底层前向传播、反向传播以及各类优化器的原理。 该项目目前已实现的功

24 Jan 22, 2022
Using VapourSynth with super resolution models and speeding them up with TensorRT.

VSGAN-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined wi

111 Jan 05, 2023
DiAne is a smart fuzzer for IoT devices

Diane Diane is a fuzzer for IoT devices. Diane works by identifying fuzzing triggers in the IoT companion apps to produce valid yet under-constrained

seclab 28 Jan 04, 2023
Python script to download the celebA-HQ dataset from google drive

download-celebA-HQ Python script to download and create the celebA-HQ dataset. WARNING from the author. I believe this script is broken since a few mo

133 Dec 21, 2022
Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation by Lukas Hoyer, Dengxin Dai, and Luc Van Gool [Arxiv] [Paper] Overview Unsup

Lukas Hoyer 149 Dec 28, 2022
A particular navigation route using satellite feed and can help in toll operations & traffic managemen

How about adding some info that can quanitfy the stress on a particular navigation route using satellite feed and can help in toll operations & traffic management The current analysis is on the satel

Ashish Pandey 1 Feb 14, 2022
AIR^2 for Interaction Prediction

This is the repository for AIR^2 for Interaction Prediction. Explanation of the solution: Video: link License AIR is released under the Apache 2.0 lic

21 Sep 27, 2022
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 01, 2023
PyTorch implementation for the ICLR 2020 paper "Understanding the Limitations of Variational Mutual Information Estimators"

Smoothed Mutual Information ``Lower Bound'' Estimator PyTorch implementation for the ICLR 2020 paper Understanding the Limitations of Variational Mutu

50 Nov 09, 2022
Deep Learning agent of Starcraft2, similar to AlphaStar of DeepMind except size of network.

Introduction This repository is for Deep Learning agent of Starcraft2. It is very similar to AlphaStar of DeepMind except size of network. I only test

Dohyeong Kim 136 Jan 04, 2023
Code for the paper "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

Unsupervised Contrastive Learning of Sound Event Representations This repository contains the code for the following paper. If you use this code or pa

Eduardo Fonseca 81 Dec 22, 2022
[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos Created by Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang Feng, Jie

58 Dec 23, 2022
Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation.

MosaicOS Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation. Introduction M

Cheng Zhang 27 Oct 12, 2022
MassiveSumm: a very large-scale, very multilingual, news summarisation dataset

MassiveSumm: a very large-scale, very multilingual, news summarisation dataset This repository contains links to data and code to fetch and reproduce

Daniel Varab 19 Dec 16, 2022
High frequency AI based algorithmic trading module.

Flow Flow is a high frequency algorithmic trading module that uses machine learning to self regulate and self optimize for maximum return. The current

59 Dec 14, 2022
Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation".

I2V-GAN This repository is the official Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation". Traffic

69 Dec 31, 2022
Context Axial Reverse Attention Network for Small Medical Objects Segmentation

CaraNet: Context Axial Reverse Attention Network for Small Medical Objects Segmentation This repository contains the implementation of a novel attenti

401 Dec 23, 2022