Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021)

Related tags

Deep LearningBAAF-Net
Overview

Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021)

PWC
PWC
PWC
PWC

This repository is for BAAF-Net introduced in the following paper:

"Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion"
Shi Qiu, Saeed Anwar, Nick Barnes
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2021)

Paper and Citation

The paper can be downloaded from here (CVF) or here (arXiv).
If you find our paper/codes/results are useful, please cite:

@inproceedings{qiu2021semantic,
  title={Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion},
  author={Qiu, Shi and Anwar, Saeed and Barnes, Nick},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  pages={1757-1767},
  year={2021}
}

Updates

  • 04/05/2021 Results for S3DIS dataset (mIoU: 72.2%, OA: 88.9%, mAcc: 83.1%) are available now.
  • 04/05/2021 Test results (sequence 11-21: mIoU: 59.9%, OA: 89.8%) for SemanticKITTI dataset are available now.
  • 04/05/2021 Validation results (sequence 08: mIoU: 58.7%, OA: 91.3%) for SemanticKITTI are available now.
  • 28/05/2021 Pretrained models can be downloaded on all 6 areas of S3DIS dataset are available at google drive.
  • 28/05/2021 codes released!

Settings

  • The project is tested on Python 3.6, Tensorflow 1.13.1 and cuda 10.0
  • Then install the dependencies: pip install -r helper_requirements.txt
  • And compile the cuda-based operators: sh compile_op.sh
    (Note: may change the cuda root directory CUDA_ROOT in ./util/sampling/compile_ops.sh)

Dataset

  • Download S3DIS dataset from here.
  • Unzip and move the folder Stanford3dDataset_v1.2_Aligned_Version to ./data.
  • Run: python utils/data_prepare_s3dis.py
    (Note: may specify other directory as dataset_path in ./util/data_prepare_s3dis.py)

Training/Test

  • Training:
python -B main_S3DIS.py --gpu 0 --mode train --test_area 5

(Note: specify the --test_area from 1~6)

  • Test:
python -B main_S3DIS.py --gpu 0 --mode test --test_area 5 --model_path 'pretrained/Area5/snap-32251'

(Note: specify the --test_area index and the trained model path --model_path)

6-fold Cross Validation

  • Conduct training and test on each area.
  • Extract all test results, Area_1_conferenceRoom_1.ply ... Area_6_pantry_1.ply (272 .ply files in total), to the folder ./data/results
  • Run: python utils/6_fold_cv.py
    (Note: may change the target folder original_data_dir and the test results base_dir in ./util/6_fold_cv.py)

Pretrained Models and Results on S3DIS Dataset

  • BAAF-Net pretrained models on all 6 areas can be downloaded from google drive.
  • Download our results (ply files) via google drive for visualizations/comparisons.
  • More Functions about loading/writing/etc. ply files can be found from here.

Results on SemanticKITTI Dataset

  • Online test results (sequence 11-21): mIoU: 59.9%, OA: 89.8%
  • Download our test results (sequence 11-21 label files) via google drive for visualizations/comparisons.

  • Validation results (sequence 08): mIoU: 58.7%, OA: 91.3%
  • Download our validation results (sequence 08 label files) via google drive for visualizations/comparisons.
  • Visualization tools can be found from semantic-kitti-api.

Acknowledgment

The code is built on RandLA-Net. We thank the authors for sharing the codes.

Owner
PhD student of ANU affiliated with Data61-CSIRO
Differentiable rasterization applied to 3D model simplification tasks

nvdiffmodeling Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Automatic 3D Model

NVIDIA Research Projects 336 Dec 30, 2022
Dogs classification with Deep Metric Learning using some popular losses

Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo

QuocThangNguyen 45 Nov 09, 2022
A python module for configuration of block devices

Blivet is a python module for system storage configuration. CI status Licence See COPYING Installation From Fedora repositories Blivet is available in

78 Dec 14, 2022
An offline deep reinforcement learning library

d3rlpy: An offline deep reinforcement learning library d3rlpy is an offline deep reinforcement learning library for practitioners and researchers. imp

Takuma Seno 817 Jan 02, 2023
Learning nonlinear operators via DeepONet

DeepONet: Learning nonlinear operators The source code for the paper Learning nonlinear operators via DeepONet based on the universal approximation th

Lu Lu 239 Jan 02, 2023
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
Simple and understandable swin-transformer OCR project

swin-transformer-ocr ocr with swin-transformer Overview Simple and understandable swin-transformer OCR project. The model in this repository heavily r

Ha YongWook 67 Dec 31, 2022
Pixel-Perfect Structure-from-Motion with Featuremetric Refinement (ICCV 2021, Oral)

Pixel-Perfect Structure-from-Motion (ICCV 2021 Oral) We introduce a framework that improves the accuracy of Structure-from-Motion by refining keypoint

Computer Vision and Geometry Lab 831 Dec 29, 2022
Code for the paper "M2m: Imbalanced Classification via Major-to-minor Translation" (CVPR 2020)

M2m: Imbalanced Classification via Major-to-minor Translation This repository contains code for the paper "M2m: Imbalanced Classification via Major-to

79 Oct 13, 2022
Reviving Iterative Training with Mask Guidance for Interactive Segmentation

This repository provides the source code for training and testing state-of-the-art click-based interactive segmentation models with the official PyTorch implementation

Visual Understanding Lab @ Samsung AI Center Moscow 406 Jan 01, 2023
Official implementation of particle-based models (GNS and DPI-Net) on the Physion dataset.

Physion: Evaluating Physical Prediction from Vision in Humans and Machines [paper] Daniel M. Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiao-Y

Hsiao-Yu Fish Tung 18 Dec 19, 2022
Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Moustafa Meshry 16 Oct 05, 2022
Gauge equivariant mesh cnn

Geometric Mesh CNN The code in this repository is an implementation of the Gauge Equivariant Mesh CNN introduced in the paper Gauge Equivariant Mesh C

50 Dec 18, 2022
[CVPR 2021] 'Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator'

[CVPR2021] Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator Overview This is the entire codebase for the paper

35 Dec 01, 2022
Neural Oblivious Decision Ensembles

Neural Oblivious Decision Ensembles A supplementary code for anonymous ICLR 2020 submission. What does it do? It learns deep ensembles of oblivious di

25 Sep 21, 2022
This is a official repository of SimViT.

SimViT This is a official repository of SimViT. We will open our models and codes about object detection and semantic segmentation soon. Our code refe

ligang 57 Dec 15, 2022
Official implementation of Meta-StyleSpeech and StyleSpeech

Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang This is an official code

min95 168 Dec 28, 2022
SegNet-like Autoencoders in TensorFlow

SegNet SegNet is a TensorFlow implementation of the segmentation network proposed by Kendall et al., with cool features like strided deconvolution, a

Andrea Azzini 66 Nov 05, 2021
一个运行在 𝐞𝐥𝐞𝐜𝐕𝟐𝐏 或 𝐪𝐢𝐧𝐠𝐥𝐨𝐧𝐠 等定时面板的签到项目

定时面板上的签到盒 一个运行在 𝐞𝐥𝐞𝐜𝐕𝟐𝐏 或 𝐪𝐢𝐧𝐠𝐥𝐨𝐧𝐠 等定时面板的签到项目 𝐞𝐥𝐞𝐜𝐕𝟐𝐏 𝐪𝐢𝐧𝐠𝐥𝐨𝐧𝐠 特别声明 本仓库发布的脚本及其中涉及的任何解锁和解密分析脚本,仅用于测试和学习研究,禁止用于商业用途,不能保证其合

Leon 1.1k Dec 30, 2022
pytorch implementation of dftd2 & dftd3

torch-dftd pytorch implementation of dftd2 [1] & dftd3 [2, 3] Install # Install from pypi pip install torch-dftd # Install from source (for developer

33 Nov 28, 2022