CondenseNet: Light weighted CNN for mobile devices

Overview

CondenseNets

This repository contains the code (in PyTorch) for "CondenseNet: An Efficient DenseNet using Learned Group Convolutions" paper by Gao Huang*, Shichen Liu*, Laurens van der Maaten and Kilian Weinberger (* Authors contributed equally).

Citation

If you find our project useful in your research, please consider citing:

@inproceedings{huang2018condensenet,
  title={Condensenet: An efficient densenet using learned group convolutions},
  author={Huang, Gao and Liu, Shichen and Van der Maaten, Laurens and Weinberger, Kilian Q},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={2752--2761},
  year={2018}
}

Contents

  1. Introduction
  2. Usage
  3. Results
  4. Discussions
  5. Contacts

Introduction

CondenseNet is a novel, computationally efficient convolutional network architecture. It combines dense connectivity between layers with a mechanism to remove unused connections. The dense connectivity facilitates feature re-use in the network, whereas learned group convolutions remove connections between layers for which this feature re-use is superfluous. At test time, our model can be implemented using standard grouped convolutions —- allowing for efficient computation in practice. Our experiments demonstrate that CondenseNets are much more efficient than other compact convolutional networks such as MobileNets and ShuffleNets.

Figure 1: Learned Group Convolution with G=C=3.

Figure 2: CondenseNets with Fully Dense Connectivity and Increasing Growth Rate.

Usage

Dependencies

Train

As an example, use the following command to train a CondenseNet on ImageNet

python main.py --model condensenet -b 256 -j 20 /PATH/TO/IMAGENET \
--stages 4-6-8-10-8 --growth 8-16-32-64-128 --gpu 0,1,2,3,4,5,6,7 --resume

As another example, use the following command to train a CondenseNet on CIFAR-10

python main.py --model condensenet -b 64 -j 12 cifar10 \
--stages 14-14-14 --growth 8-16-32 --gpu 0 --resume

Evaluation

We take the ImageNet model trained above as an example.

To evaluate the trained model, use evaluate to evaluate from the default checkpoint directory:

python main.py --model condensenet -b 64 -j 20 /PATH/TO/IMAGENET \
--stages 4-6-8-10-8 --growth 8-16-32-64-128 --gpu 0 --resume \
--evaluate

or use evaluate-from to evaluate from an arbitrary path:

python main.py --model condensenet -b 64 -j 20 /PATH/TO/IMAGENET \
--stages 4-6-8-10-8 --growth 8-16-32-64-128 --gpu 0 --resume \
--evaluate-from /PATH/TO/BEST/MODEL

Note that these models are still the large models. To convert the model to group-convolution version as described in the paper, use the convert-from function:

python main.py --model condensenet -b 64 -j 20 /PATH/TO/IMAGENET \
--stages 4-6-8-10-8 --growth 8-16-32-64-128 --gpu 0 --resume \
--convert-from /PATH/TO/BEST/MODEL

Finally, to directly load from a converted model (that is, a CondenseNet), use a converted model file in combination with the evaluate-from option:

python main.py --model condensenet_converted -b 64 -j 20 /PATH/TO/IMAGENET \
--stages 4-6-8-10-8 --growth 8-16-32-64-128 --gpu 0 --resume \
--evaluate-from /PATH/TO/CONVERTED/MODEL

Other Options

We also include DenseNet implementation in this repository.
For more examples of usage, please refer to script.sh
For detailed options, please python main.py --help

Results

Results on ImageNet

Model FLOPs Params Top-1 Err. Top-5 Err. Pytorch Model
CondenseNet-74 (C=G=4) 529M 4.8M 26.2 8.3 Download (18.69M)
CondenseNet-74 (C=G=8) 274M 2.9M 29.0 10.0 Download (11.68M)

Results on CIFAR

Model FLOPs Params CIFAR-10 CIFAR-100
CondenseNet-50 28.6M 0.22M 6.22 -
CondenseNet-74 51.9M 0.41M 5.28 -
CondenseNet-86 65.8M 0.52M 5.06 23.64
CondenseNet-98 81.3M 0.65M 4.83 -
CondenseNet-110 98.2M 0.79M 4.63 -
CondenseNet-122 116.7M 0.95M 4.48 -
CondenseNet-182* 513M 4.2M 3.76 18.47

(* trained 600 epochs)

Inference time on ARM platform

Model FLOPs Top-1 Time(s)
VGG-16 15,300M 28.5 354
ResNet-18 1,818M 30.2 8.14
1.0 MobileNet-224 569M 29.4 1.96
CondenseNet-74 (C=G=4) 529M 26.2 1.89
CondenseNet-74 (C=G=8) 274M 29.0 0.99

Contact

[email protected]
[email protected]

We are working on the implementation on other frameworks.
Any discussions or concerns are welcomed!

Owner
Shichen Liu
PhD student at USC
Shichen Liu
[CVPR'22] Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast

wseg Overview The Pytorch implementation of Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast. [arXiv] Though image-level weakly

Ye Du 96 Dec 30, 2022
This is the code of paper ``Contrastive Coding for Active Learning under Class Distribution Mismatch'' with python.

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

21 Dec 22, 2022
Example of semantic segmentation in Keras

keras-semantic-segmentation-example Example of semantic segmentation in Keras Single class example: Generated data: random ellipse with random color o

53 Mar 23, 2022
📚 A collection of Jupyter notebooks for learning and experimenting with OpenVINO 👓

A collection of ready-to-run Python* notebooks for learning and experimenting with OpenVINO developer tools. The notebooks are meant to provide an introduction to OpenVINO basics and teach developers

OpenVINO Toolkit 840 Jan 03, 2023
A curated list of the top 10 computer vision papers in 2021 with video demos, articles, code and paper reference.

The Top 10 Computer Vision Papers of 2021 The top 10 computer vision papers in 2021 with video demos, articles, code, and paper reference. While the w

Louis-François Bouchard 118 Dec 21, 2022
PyTorch implementation of CVPR'18 - Perturbative Neural Networks

This is an attempt to reproduce results in Perturbative Neural Networks paper. See original repo for details.

Michael Klachko 57 May 14, 2021
Tutel MoE: An Optimized Mixture-of-Experts Implementation

Project Tutel Tutel MoE: An Optimized Mixture-of-Experts Implementation. Supported Framework: Pytorch Supported GPUs: CUDA(fp32 + fp16), ROCm(fp32) Ho

Microsoft 344 Dec 29, 2022
Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021)

Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021) Yunsong Zhou, Yuan He, Hongzi Zhu, Cheng Wang, Hongyang Li, Qinhong Jia

Yunsong Zhou 51 Dec 14, 2022
Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Det

123 Jan 04, 2023
Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh

generate_cloud_points Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh. Run python disp_mesh.py Or you

Peng Yu 2 Dec 24, 2021
Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Eric Wallace 248 Dec 17, 2022
Facial detection, landmark tracking and expression transfer library for Windows, Linux and Mac

Welcome to the CSIRO Face Analysis SDK. Documentation for the SDK can be found in doc/documentation.html. All code in this SDK is provided according t

Luiz Carlos Vieira 7 Jul 16, 2020
Out of Distribution Detection on Natural Adversarial Examples

OOD-on-NAE Research project on out of distribution detection for the Computer Vision course by Prof. Rob Fergus (CSCI-GA 2271) Paper out on arXiv - ht

Anugya 1 Jun 08, 2022
Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations. [2021]

Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations This repo contains the Pytorch implementation of our paper: Revisit

Wouter Van Gansbeke 80 Nov 20, 2022
Exploration of some patients clinical variables.

Answer_ALS_clinical_data Exploration of some patients clinical variables. All the clinical / metadata data is available here: https://data.answerals.o

1 Jan 20, 2022
[NeurIPS2021] Code Release of Learning Transferable Perturbations

Learning Transferable Adversarial Perturbations This is an official release of the paper Learning Transferable Adversarial Perturbations. The code is

Krishna Kanth 17 Nov 11, 2022
Implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork.

YOLOv4-large This is the implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork. YOLOv4-CSP YOLOv4-tiny YOLOv4-

Kin-Yiu, Wong 2k Jan 02, 2023
Evaluating Cross-lingual Sentence Representations

XNLI: The Cross-Lingual NLI Corpus XNLI is an evaluation corpus for language transfer and cross-lingual sentence classification in 15 languages. New:

Meta Research 395 Dec 19, 2022
simple demo codes for Learning to Teach with Dynamic Loss Functions

Learning to Teach with Dynamic Loss Functions This repo contains the simple demo for the NeurIPS-18 paper: Learning to Teach with Dynamic Loss Functio

Lijun Wu 15 Dec 30, 2021
Learning Temporal Consistency for Low Light Video Enhancement from Single Images (CVPR2021)

StableLLVE This is a Pytorch implementation of "Learning Temporal Consistency for Low Light Video Enhancement from Single Images" in CVPR 2021, by Fan

99 Dec 19, 2022