Implementation of "A MLP-like Architecture for Dense Prediction"

Related tags

Deep LearningCycleMLP
Overview

A MLP-like Architecture for Dense Prediction (arXiv)

License: MIT Python 3.8

    

Updates

  • (22/07/2021) Initial release.

Model Zoo

We provide CycleMLP models pretrained on ImageNet 2012.

Model Parameters FLOPs Top 1 Acc. Download
CycleMLP-B1 15M 2.1G 78.9% model
CycleMLP-B2 27M 3.9G 81.6% model
CycleMLP-B3 38M 6.9G 82.4% model
CycleMLP-B4 52M 10.1G 83.0% model
CycleMLP-B5 76M 12.3G 83.2% model

Usage

Install

  • PyTorch 1.7.0+ and torchvision 0.8.1+
  • timm:
pip install 'git+https://github.com/rwightman/[email protected]'

or

git clone https://github.com/rwightman/pytorch-image-models
cd pytorch-image-models
git checkout c2ba229d995c33aaaf20e00a5686b4dc857044be
pip install -e .
  • fvcore (optional, for FLOPs calculation)
  • mmcv, mmdetection, mmsegmentation (optional)

Data preparation

Download and extract ImageNet train and val images from http://image-net.org/. The directory structure is:

│path/to/imagenet/
├──train/
│  ├── n01440764
│  │   ├── n01440764_10026.JPEG
│  │   ├── n01440764_10027.JPEG
│  │   ├── ......
│  ├── ......
├──val/
│  ├── n01440764
│  │   ├── ILSVRC2012_val_00000293.JPEG
│  │   ├── ILSVRC2012_val_00002138.JPEG
│  │   ├── ......
│  ├── ......

Evaluation

To evaluate a pre-trained CycleMLP-B5 on ImageNet val with a single GPU run:

python main.py --eval --model CycleMLP_B5 --resume path/to/CycleMLP_B5.pth --data-path /path/to/imagenet

Training

To train CycleMLP-B5 on ImageNet on a single node with 8 gpus for 300 epochs run:

python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py --model CycleMLP_B5 --batch-size 128 --data-path /path/to/imagenet --output_dir /path/to/save

Acknowledgement

This code is based on DeiT and pytorch-image-models. Thanks for their wonderful works

Citing

@article{chen2021cyclemlp,
  title={CycleMLP: A MLP-like Architecture for Dense Prediction},
  author={Chen, Shoufa and Xie, Enze and Ge, Chongjian and Liang, Ding and Luo, Ping},
  journal={arXiv preprint arXiv:2107.10224},
  year={2021}
}

License

CycleMLP is released under MIT License.

Comments
  • detection result

    detection result

    Applying PVT detection framework, I tried a CycleMLP-B1 based detector with RetinaNet 1x. I got AP=27.1, fairly inferior to the reported 38.6. Could you give some advices to reproduce the reported result?

    The specific configure is as follows

    base = [ 'base/models/retinanet_r50_fpn.py', 'base/datasets/coco_detection.py', 'base/schedules/schedule_1x.py', 'base/default_runtime.py' ] #optimizer model = dict( pretrained='./pretrained/CycleMLP_B1.pth', backbone=dict( type='CycleMLP_B1_feat', style='pytorch'), neck=dict( type='FPN', in_channels=[64, 128, 320, 512], out_channels=256, start_level=1, add_extra_convs='on_input', num_outs=5)) #optimizer optimizer = dict(delete=True, type='AdamW', lr=0.0001, weight_decay=0.0001) optimizer_config = dict(grad_clip=None)

    find_unused_parameters = True

    opened by mountain111 6
  • Compiling CycleMLP

    Compiling CycleMLP

    Thank you for this great repo and interesting paper.

    I tried compiling CycleMLP to onnx and not surpassingly the process failed since CycleMLP include dynamic offset creation in https://github.com/ShoufaChen/CycleMLP/blob/main/cycle_mlp.py#L132 and as such cannot be converted to a frozen graph. Were you able to convert CycleMLP to onnx or any other frozen graph framework?

    Thanks in advance.

    opened by shairoz-deci 6
  • Questions about offset calculation

    Questions about offset calculation

    Hi, thanks for your wonderful work.

    I'm currently studying your work, and come up with some question about the offset calculations.

    I understood the offset calculation mentioned on the paper, but can't understand about how generated offset is being used in the code.

    For ex) if $S_H \times S_W : 3 \times 1$; I understood how the offset is applied in this figure 스크린샷 2022-06-13 오후 9 18 20

    by calculate like this: 스크린샷 2022-06-13 오후 9 19 57

    However, when I run the offset generating code, I can't figure out how this offset is being used in deform_conv2d 스크린샷 2022-06-13 오후 9 21 57

    Can you provide more detailed information about this??

    And also, the paper contains how $S_H \times S_W: 3 \times 3$ works, but in the code, it seems like either one ofkernel_size[0] or kernel_size[1] has to be 1. So, if I want to use $S_H \times S_W : 3 \times 3$, do I have to make $3 \times 1$ and $1 \times 3$ offsets and add those together?

    Thank you again for your work. I really learned a lot.

    opened by tae-mo 5
  • Example of CycleMLP Configuration for Dense Prediction

    Example of CycleMLP Configuration for Dense Prediction

    Hello.

    First of all, thank you for curating this interesting work. I was wondering, are there any working examples of how I can use CycleMLP for dense prediction while maintaining the original input size (e.g., predict a 0 or 1 value for each pixel in an input image)? In addition, I am interested in only a single ("annotated") output image, although I noticed the model definitions given in this repository output multiple downsampled versions of the original input image. Any thoughts on this?

    Thank you in advance for your time.

    opened by amorehead 2
  • Swin-B vs CycleMLP-B on image classification

    Swin-B vs CycleMLP-B on image classification

    For classificaion on ImageNet-1k, the acuracy of Swin-B is 83.5, which is 0.1 higher than the proposed CycleMLP-B. But, in this paper, the authors reprot that the accuracy of Swin-B is 83.3, which is 0.1 lower than the proposed CycleMLP-B. Why are these accuracies different?

    opened by hkzhang91 1
  • question about the offset

    question about the offset

    Thanks for your work!

    The implementation of this code inspired me. But the calculation of offset here is confusing. Although this issue (https://github.com/ShoufaChen/CycleMLP/issues/10) has asked similar questions, I haven't found a reasonable explanation.

    https://github.com/ShoufaChen/CycleMLP/blob/2f76a1f6e3cc6672143fdac46e3db5f9a7341253/cycle_mlp.py#L127-L136

    kernel_size = (1, 3)
    start_idx = (kernel_size[0] * kernel_size[1]) // 2
    for i in range(num_channels):
        offset[0, 2 * i + 0, 0, 0] = 0
        # relative offset
        offset[0, 2 * i + 1, 0, 0] = (i + start_idx) % kernel_size[1] - (kernel_size[1] // 2)
    offset.reshape(num_channels, 2)
    
    tensor([[ 0.,  0.],
            [ 0.,  1.],
            [ 0., -1.],
            [ 0.,  0.],
            [ 0.,  1.],
            [ 0., -1.]])
    

    the results are different with the figure in paper:

    image

    Some codes for verification:

    import torch
    from torchvision.ops import deform_conv2d
    
    num_channels = 6
    
    data = torch.arange(1, 6).reshape(1, 1, 1, 5).expand(-1, num_channels, -1, -1)
    data
    """
    tensor([[[[1, 2, 3, 4, 5]],
             [[1, 2, 3, 4, 5]],
             [[1, 2, 3, 4, 5]],
             [[1, 2, 3, 4, 5]],
             [[1, 2, 3, 4, 5]],
             [[1, 2, 3, 4, 5]]]])
    """
    
    weight = torch.eye(num_channels).reshape(num_channels, num_channels, 1, 1)
    weight.reshape(num_channels, num_channels)
    """
    tensor([[1., 0., 0., 0., 0., 0.],
            [0., 1., 0., 0., 0., 0.],
            [0., 0., 1., 0., 0., 0.],
            [0., 0., 0., 1., 0., 0.],
            [0., 0., 0., 0., 1., 0.],
            [0., 0., 0., 0., 0., 1.]])
    """
    
    offset = torch.empty(1, 2 * num_channels * 1 * 1, 1, 1)
    kernel_size = (1, 3)
    start_idx = (kernel_size[0] * kernel_size[1]) // 2
    for i in range(num_channels):
        offset[0, 2 * i + 0, 0, 0] = 0
        # relative offset
        offset[0, 2 * i + 1, 0, 0] = (
            (i + start_idx) % kernel_size[1] - (kernel_size[1] // 2)
        )
    offset.reshape(num_channels, 2)
    """
    tensor([[ 0.,  0.],
            [ 0.,  1.],
            [ 0., -1.],
            [ 0.,  0.],
            [ 0.,  1.],
            [ 0., -1.]])
    """
    
    deform_conv2d(
        data.float(), 
        offset=offset.expand(-1, -1, -1, 5).float(), 
        weight=weight.float(), 
        bias=None,
    )
    """
    tensor([[[[1., 2., 3., 4., 5.]],
             [[2., 3., 4., 5., 0.]],
             [[0., 1., 2., 3., 4.]],
             [[1., 2., 3., 4., 5.]],
             [[2., 3., 4., 5., 0.]],
             [[0., 1., 2., 3., 4.]]]])
    """
    
    opened by lartpang 1
  • question about the offset

    question about the offset

    Hi, thank you very much for your excellent work. In Fig.4 of your paper, you show the pseudo-kernel when kernel size is 1x3. But I when I find that function "gen_offset" does not generate the same offset as Fig.4. The offset it generates is "0,1,0,-1,0,0,0,1..." instead of "0,1,0,-1,0,1,0,-1', which is shown in Fig.4. So could you please tell me the reason? image image

    opened by linjing7 1
  • About

    About "crop_pct"

    Hi, thanks for your great work and code. I wonder the parameter crop_pct actually works in which part of code. When I go throught the timm, I can't find out how this crop_pct is loaded.

    opened by ggjy 1
  • How to deploy CycleMLP-T for training?

    How to deploy CycleMLP-T for training?

    Thank you very much for such a wonderful work!

    After learning the cycle_mlp source code in the repository, I am very confused to deploy CycleMLP Block based on Swin Transformer. Is it convenient for you to release swin-based CycleMLP? Looking forward to your reply, Thanks!

    opened by Pak287 0
Owner
Shoufa Chen
Shoufa Chen
Attention-based Transformation from Latent Features to Point Clouds (AAAI 2022)

Attention-based Transformation from Latent Features to Point Clouds This repository contains a PyTorch implementation of the paper: Attention-based Tr

12 Nov 11, 2022
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes

FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes This repository contains the source code accompanying the paper: FlexConv: C

Robert-Jan Bruintjes 96 Dec 12, 2022
Code for EMNLP 2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training"

SCAPT-ABSA Code for EMNLP2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training" Overvie

Zhengyan Li 66 Dec 04, 2022
Pytorch code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral)

DPFM Code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral) Installation This implementation runs on python = 3.7, use pip to install depend

Souhaib Attaiki 29 Oct 03, 2022
Source code of "Hold me tight! Influence of discriminative features on deep network boundaries"

Hold me tight! Influence of discriminative features on deep network boundaries This is the source code to reproduce the experiments of the NeurIPS 202

EPFL LTS4 19 Dec 10, 2021
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
Transfer style api - An API to use with Tranfer Style App, where you can use two image and transfer the style

Transfer Style API It's an API to use with Tranfer Style App, where you can use

Brian Alejandro 1 Feb 13, 2022
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)

Spatial unbiased GANs — Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener

Junho Kim 16 Apr 15, 2022
SuRE Evaluation: A Supplementary Material

SuRE Evaluation: A Supplementary Material This repository contains supplementary material regarding the evaluations presented in the paper Visual Expl

NYU Visualization Lab 0 Dec 14, 2021
A Number Recognition algorithm

Paddle-VisualAttention Results_Compared SVHN Dataset Methods Steps GPU Batch Size Learning Rate Patience Decay Step Decay Rate Training Speed (FPS) Ac

1 Nov 12, 2021
PyTorch implementation of the ideas presented in the paper Interaction Grounded Learning (IGL)

Interaction Grounded Learning This repository contains a simple PyTorch implementation of the ideas presented in the paper Interaction Grounded Learni

Arthur Juliani 4 Aug 31, 2022
Source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network

D-HAN The source code of D-HAN This is the source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network. However, only the co

30 Sep 22, 2022
This repository is dedicated to developing and maintaining code for experiments with wide neural networks.

Wide-Networks This repository contains the code of various experiments on wide neural networks. In particular, we implement classes for abc-parameteri

Karl Hajjar 0 Nov 02, 2021
The code for paper Efficiently Solve the Max-cut Problem via a Quantum Qubit Rotation Algorithm

Quantum Qubit Rotation Algorithm Single qubit rotation gates $$ U(\Theta)=\bigotimes_{i=1}^n R_x (\phi_i) $$ QQRA for the max-cut problem This code wa

SheffieldWang 0 Oct 18, 2021
This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-grained Classification".

HA-in-Fine-Grained-Classification This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-g

16 Oct 29, 2022
Modeling CNN layers activity with Gaussian mixture model

GMM-CNN This code package implements the modeling of CNN layers activity with Gaussian mixture model and Inference Graphs visualization technique from

3 Aug 05, 2022
This repository contains tutorials for the py4DSTEM Python package

py4DSTEM Tutorials This repository contains tutorials for the py4DSTEM Python package. For more information about py4DSTEM, including installation ins

11 Dec 23, 2022
TDN: Temporal Difference Networks for Efficient Action Recognition

TDN: Temporal Difference Networks for Efficient Action Recognition Overview We release the PyTorch code of the TDN(Temporal Difference Networks).

Multimedia Computing Group, Nanjing University 326 Dec 13, 2022
Akshat Surolia 2 May 11, 2022
Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)

Introduction Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper Song Park1

Clova AI Research 97 Dec 23, 2022