[ACM MM 2021] TSA-Net: Tube Self-Attention Network for Action Quality Assessment

Related tags

Deep LearningTSA-Net
Overview

Tube Self-Attention Network (TSA-Net)

This repository contains the PyTorch implementation for paper TSA-Net: Tube Self-Attention Network for Action Quality Assessment (ACM-MM'21 Oral)

[arXiv] [supp] [slides] [poster] [video]

If this repository is helpful to you, please star it. If you find our work useful in your research, please consider citing:

@inproceedings{TSA-Net,
  title={TSA-Net: Tube Self-Attention Network for Action Quality Assessment},
  author={Wang, Shunli and Yang, Dingkang and Zhai, Peng and Chen, Chixiao and Zhang, Lihua},
  booktitle={Proceedings of the 29th ACM International Conference on Multimedia},
  year={2021},
  pages={4902–4910},
  numpages={9}
}

User Guide

In this repository, we open source the code of TSA-Net on FR-FS dataset. The initialization process is as follows:

# 1.Clone this repository
git clone https://github.com/Shunli-Wang/TSA-Net.git ./TSA-Net
cd ./TSA-Net

# 2.Create conda env
conda create -n TSA-Net python
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch
pip install -r requirements.txt

# 3.Download pre-trained model and FRFS dataset. All download links are listed as follow.
# PATH/TO/rgb_i3d_pretrained.pt 
# PATH/TO/FRFS 

# 4.Create data dir
mkdir ./data && cd ./data
mv PATH/TO/rgb_i3d_pretrained.pt ./
ln -s PATH/TO/FRFS ./FRFS

After initialization, please check the data structure:

.
├── data
│   ├── FRFS -> PATH/TO/FRFS
│   └── rgb_i3d_pretrained.pt
├── dataset.py
├── train.py
├── test.py
...

Download links:

Training & Evaluation

We provide the training and testing code of TSA-Net and Plain-Net. The difference between the two is whether the TSA module exists. This option is controlled by --TSA item.

python train.py --gpu 0 --model_path TSA-USDL --TSA
python test.py --gpu 0 --pt_w Exp/TSA-USDL/best.pth --TSA

python train.py --gpu 0 --model_path USDL
python test.py --gpu 0 --pt_w Exp/USDL/best.pth

Acknowledgement

Our code is adapted from MUSDL. We are very grateful for their wonderful implementation. All tracking boxes in our project are generated by SiamMask. We also sincerely thank them for their contributions.

Contact

If you have any questions about our work, please contact [email protected].

Owner
ShunliWang
ShunliWang
Dynamical Wasserstein Barycenters for Time Series Modeling

Dynamical Wasserstein Barycenters for Time Series Modeling This is the code related for the Dynamical Wasserstein Barycenter model published in Neurip

8 Sep 09, 2022
Parris, the automated infrastructure setup tool for machine learning algorithms.

README Parris, the automated infrastructure setup tool for machine learning algorithms. What Is This Tool? Parris is a tool for automating the trainin

Joseph Greene 319 Aug 02, 2022
FANet - Real-time Semantic Segmentation with Fast Attention

FANet Real-time Semantic Segmentation with Fast Attention Ping Hu, Federico Perazzi, Fabian Caba Heilbron, Oliver Wang, Zhe Lin, Kate Saenko , Stan Sc

Ping Hu 42 Nov 30, 2022
This is a library for training and applying sparse fine-tunings with torch and transformers.

This is a library for training and applying sparse fine-tunings with torch and transformers. Please refer to our paper Composable Sparse Fine-Tuning f

Cambridge Language Technology Lab 37 Dec 30, 2022
Wordle Env: A Daily Word Environment for Reinforcement Learning

Wordle Env: A Daily Word Environment for Reinforcement Learning Setup Steps: git pull [email&#

2 Mar 28, 2022
Keras-1D-ACGAN-Data-Augmentation

Keras-1D-ACGAN-Data-Augmentation What is the ACGAN(Auxiliary Classifier GANs) ? Related Paper : [Abstract : Synthesizing high resolution photorealisti

Jae-Hoon Shim 7 Dec 23, 2022
Official code for On Path Integration of Grid Cells: Group Representation and Isotropic Scaling (NeurIPS 2021)

On Path Integration of Grid Cells: Group Representation and Isotropic Scaling This repo contains the official implementation for the paper On Path Int

Ruiqi Gao 39 Nov 10, 2022
Image to Image translation, image generataton, few shot learning

Semi-supervised Learning for Few-shot Image-to-Image Translation [paper] Abstract: In the last few years, unpaired image-to-image translation has witn

yaxingwang 49 Nov 18, 2022
An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters

CNN-Filter-DB An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters Paul Gavrikov, Janis Keuper Paper: htt

Paul Gavrikov 18 Dec 30, 2022
Amazing-Python-Scripts - 🚀 Curated collection of Amazing Python scripts from Basics to Advance with automation task scripts.

📑 Introduction A curated collection of Amazing Python scripts from Basics to Advance with automation task scripts. This is your Personal space to fin

Avinash Ranjan 1.1k Dec 29, 2022
Codes for 'Dual Parameterization of Sparse Variational Gaussian Processes'

Dual Parameterization of Sparse Variational Gaussian Processes Documentation | Notebooks | API reference Introduction This repository is the official

AaltoML 7 Dec 23, 2022
Wider or Deeper: Revisiting the ResNet Model for Visual Recognition

ademxapp Visual applications by the University of Adelaide In designing our Model A, we did not over-optimize its structure for efficiency unless it w

Zifeng Wu 338 Dec 12, 2022
A Quick and Dirty Progressive Neural Network written in TensorFlow.

prog_nn .▄▄ · ▄· ▄▌ ▐ ▄ ▄▄▄· ▐ ▄ ▐█ ▀. ▐█▪██▌•█▌▐█▐█ ▄█▪ •█▌▐█ ▄▀▀▀█▄▐█▌▐█▪▐█▐▐▌ ██▀

SynPon 53 Dec 12, 2022
Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset

SW-CV-ModelZoo Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset Framework: TF/Keras 2.7 Training SQLite D

20 Dec 27, 2022
LowRankModels.jl is a julia package for modeling and fitting generalized low rank models.

LowRankModels.jl LowRankModels.jl is a Julia package for modeling and fitting generalized low rank models (GLRMs). GLRMs model a data array by a low r

Madeleine Udell 183 Dec 17, 2022
Unsupervised Learning of Multi-Frame Optical Flow with Occlusions

This is a Pytorch implementation of Janai, J., Güney, F., Ranjan, A., Black, M. and Geiger, A., Unsupervised Learning of Multi-Frame Optical Flow with

Anurag Ranjan 110 Nov 02, 2022
Reinforcement learning algorithms in RLlib

raylab Reinforcement learning algorithms in RLlib and PyTorch. Installation pip install raylab Quickstart Raylab provides agents and environments to b

Ângelo 50 Sep 08, 2022
Random Erasing Data Augmentation. Experiments on CIFAR10, CIFAR100 and Fashion-MNIST

Random Erasing Data Augmentation =============================================================== black white random This code has the source code for

Zhun Zhong 654 Dec 26, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
Implement A3C for Mujoco gym envs

pytorch-a3c-mujoco Disclaimer: my implementation right now is unstable (you ca refer to the learning curve below), I'm not sure if it's my problems. A

Andrew 70 Dec 12, 2022