Repository relating to the CVPR21 paper TimeLens: Event-based Video Frame Interpolation

Overview

TimeLens: Event-based Video Frame Interpolation

TimeLens

This repository is about the High Speed Event and RGB (HS-ERGB) dataset, used in the 2021 CVPR paper TimeLens: Event-based Video Frame Interpolation by Stepan Tulyakov*, Daniel Gehrig*, Stamatios Georgoulis, Julius Erbach, Mathias Gehrig, Yuanyou Li, and Davide Scaramuzza.

For more information, visit our project page.

Citation

A pdf of the paper is available here. If you use this dataset, please cite this publication as follows:

@Article{Tulyakov21CVPR,
  author        = {Stepan Tulyakov and Daniel Gehrig and Stamatios Georgoulis and Julius Erbach and Mathias Gehrig and Yuanyou Li and
                  Davide Scaramuzza},
  title         = {{TimeLens}: Event-based Video Frame Interpolation},
  journal       = "IEEE Conference on Computer Vision and Pattern Recognition",
  year          = 2021,
}

Google Colab

A Google Colab notebook is now available here. You can upsample your own video and events from you gdrive.

Gallery

For more examples, visit our project page.

coke paprika pouring water_bomb_floor

Installation

Install the dependencies with

cuda_version=10.2
conda create -y -n timelens python=3.7
conda activate timelens
conda install -y pytorch torchvision cudatoolkit=$cuda_version -c pytorch
conda install -y -c conda-forge opencv scipy tqdm click

Test TimeLens

First start by cloning this repo into a new folder

mkdir ~/timelens/
cd ~/timelens
git clone https://github.com/uzh-rpg/rpg_timelens

Then download the checkpoint and data to the repo

cd rpg_timelens
wget http://rpg.ifi.uzh.ch/timelens/data/checkpoint.bin
wget http://rpg.ifi.uzh.ch/timelens/data/example_github.zip
unzip example_github.zip 
rm -rf example_github.zip

Running Timelens

To run timelens simply call

skip=0
insert=7
python -m timelens.run_timelens checkpoint.bin example/events example/images example/output $skip $insert

This will generate the output in example/output. The first four variables are the checkpoint file, image folder and event folder and output folder respectively. The variables skip and insert determine the number of skipped vs. inserted frames, i.e. to generate a video with an 8 higher framerate, 7 frames need to be inserted, and 0 skipped.

The resulting images can be converted to a video with

ffmpeg -i example/output/%06d.png timelens.mp4

the resulting video is timelens.mp4.

Dataset

hsergb

Download the dataset from our project page. The dataset structure is as follows

.
├── close
│   └── test
│       ├── baloon_popping
│       │   ├── events_aligned
│       │   └── images_corrected
│       ├── candle
│       │   ├── events_aligned
│       │   └── images_corrected
│       ...
│
└── far
    └── test
        ├── bridge_lake_01
        │   ├── events_aligned
        │   └── images_corrected
        ├── bridge_lake_03
        │   ├── events_aligned
        │   └── images_corrected
        ...

Each events_aligned folder contains events files with template filename %06d.npz, and images_corrected contains image files with template filename %06d.png. In events_aligned each event file with index n contains events between images with index n-1 and n, i.e. event file 000001.npz contains events between images 000000.png and 000001.png. Moreover, images_corrected also contains timestamp.txt where image timestamps are stored. Note that in some folders there are more image files than event files. However, the image stamps in timestamp.txt should match with the event files and the additional images can be ignored.

For a quick test download the dataset to a folder using the link sent by email.

wget download_link.zip -O /tmp/dataset.zip
unzip /tmp/dataset.zip -d hsergb/

And run the test

python test_loader.py --dataset_root hsergb/ \ 
                      --dataset_type close \ 
                      --sequence spinning_umbrella \ 
                      --sample_index 400

This should open a window visualizing aligned events with a single image.

Owner
Robotics and Perception Group
Robotics and Perception Group
GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification

GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification This is the official pytorch implementation of t

Alibaba Cloud 5 Nov 14, 2022
Aligning Latent and Image Spaces to Connect the Unconnectable

About This repo contains the official implementation of the Aligning Latent and Image Spaces to Connect the Unconnectable paper. It is a GAN model whi

Ivan Skorokhodov 203 Jan 03, 2023
MonoRCNN is a monocular 3D object detection method for automonous driving

MonoRCNN MonoRCNN is a monocular 3D object detection method for automonous driving, published at ICCV 2021. This project is an implementation of MonoR

87 Dec 27, 2022
codes for IKM (arXiv2021, Submitted to IEEE Trans)

Image-specific Convolutional Kernel Modulation for Single Image Super-resolution This repository is for IKM introduced in the following paper Yuanfei

Yuanfei Huang 9 Dec 29, 2022
Transfer-Learn is an open-source and well-documented library for Transfer Learning.

Transfer-Learn is an open-source and well-documented library for Transfer Learning. It is based on pure PyTorch with high performance and friendly API. Our code is pythonic, and the design is consist

THUML @ Tsinghua University 2.2k Jan 03, 2023
A novel framework to automatically learn high-quality scanning of non-planar, complex anisotropic appearance.

appearance-scanner About This repository is an implementation of the neural network proposed in Free-form Scanning of Non-planar Appearance with Neura

Xiaohe Ma 14 Oct 18, 2022
Parameter-ensemble-differential-evolution - Shows how to do parameter ensembling using differential evolution.

Ensembling parameters with differential evolution This repository shows how to ensemble parameters of two trained neural networks using differential e

Sayak Paul 9 May 04, 2022
ColossalAI-Examples - Examples of training models with hybrid parallelism using ColossalAI

ColossalAI-Examples This repository contains examples of training models with Co

HPC-AI Tech 185 Jan 09, 2023
[CVPR 2022 Oral] MixFormer: End-to-End Tracking with Iterative Mixed Attention

MixFormer The official implementation of the CVPR 2022 paper MixFormer: End-to-End Tracking with Iterative Mixed Attention [Models and Raw results] (G

Multimedia Computing Group, Nanjing University 235 Jan 03, 2023
YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone

YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone In our recent paper we propose the YourTTS model. YourTTS bri

Edresson Casanova 390 Dec 29, 2022
Using LSTM write Tang poetry

本教程将通过一个示例对LSTM进行介绍。通过搭建训练LSTM网络,我们将训练一个模型来生成唐诗。本文将对该实现进行详尽的解释,并阐明此模型的工作方式和原因。并不需要过多专业知识,但是可能需要新手花一些时间来理解的模型训练的实际情况。为了节省时间,请尽量选择GPU进行训练。

56 Dec 15, 2022
A python library for face detection and features extraction based on mediapipe library

FaceAnalyzer A python library for face detection and features extraction based on mediapipe library Introduction FaceAnalyzer is a library based on me

Saifeddine ALOUI 14 Dec 30, 2022
U-Net Implementation: Convolutional Networks for Biomedical Image Segmentation" using the Carvana Image Masking Dataset in PyTorch

U-Net Implementation By Christopher Ley This is my interpretation and implementation of the famous paper "U-Net: Convolutional Networks for Biomedical

Christopher Ley 1 Jan 06, 2022
Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included.

pixel_character_generator Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included. Dataset TinyHero D

Agnieszka Mikołajczyk 88 Nov 17, 2022
Rethinking the U-Net architecture for multimodal biomedical image segmentation

MultiResUNet Rethinking the U-Net architecture for multimodal biomedical image segmentation This repository contains the original implementation of "M

Nabil Ibtehaz 308 Jan 05, 2023
This is an official implementation for "Self-Supervised Learning with Swin Transformers".

Self-Supervised Learning with Vision Transformers By Zhenda Xie*, Yutong Lin*, Zhuliang Yao, Zheng Zhang, Qi Dai, Yue Cao and Han Hu This repo is the

Swin Transformer 529 Jan 02, 2023
SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning

SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning This repository is the official implementation of "SHRIMP: Sparser Random Featur

Bobby Shi 0 Dec 16, 2021
Simulations for Turring patterns on an apically expanding domain. T

Turing patterns on expanding domain Simulations for Turring patterns on an apically expanding domain. The details about the models and numerical imple

Yue Liu 0 Aug 03, 2021
Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB)

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python

deepface Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid

Kushal Shingote 2 Feb 10, 2022