A new benchmark for Icon Question Answering (IconQA) and a large-scale icon dataset Icon645.

Related tags

Deep LearningIconQA
Overview

IconQA

License: CC BY-SA 4.0

About

IconQA is a new diverse abstract visual question answering dataset that highlights the importance of abstract diagram understanding and comprehensive cognitive reasoning in real-world problems.

iconqa examples

There are three different sub-tasks in IconQA:

  • 57,672 image choice MC questions
  • 31,578 text chioce MC questions
  • 18,189 fill-in-the-blank questions
Sub-Tasks Train Validation Test Total
Multi-image-choice 34,603 11,535 11,535 57,672
Multi-text-choice 18,946 6,316 6,316 31,578
Filling-in-the-blank 10,913 3,638 3,638 18,189

In addition to IconQA, we also present Icon645, a large-scale dataset of icons that cover a wide range of objects:

  • 645,687 colored icons
  • 377 different icon classes

icon_examples

For more details, you can find our website here and our paper here.

Download

Our dataset is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Please read the license before you use, change, or share our dataset.

You can download IconQA here. Or run the commands by:

cd data
wget https://iconqa2021.s3.us-west-1.amazonaws.com/iconqa.zip
unzip iconqa.zip

You can download Icon645 here. Or run the commands by:

cd data
wget https://iconqa2021.s3.us-west-1.amazonaws.com/icon645.zip
unzip icon645.zip

File structures for the IconQA dataset:

IconQA
|   LICENSE.md
|   metadata.json
|   pid2skills.json
|   pid_splits.json
|   problems.json
|   skills.json
└───test
│   │
│   └───choose_img
│   |   |
│   |   └───question_id
│   |   |   |   image.png
|   |   |   |   data.json
|   |   |   |   choice_0.png
|   |   |   |   choice_1.png
|   |   |   |   ...
|   |   |
|   |   └───question_id
|   |   |   ...
|   |   
|   └───choose_txt
|   |   |  
|   |   └───question_id
|   |   |   |   image.png
|   |   |   |   data.json
|   |   | 
|   |   └───question_id
|   |   |   ...
|   |
|   └───fill_in_blank
|       |  
|       └───question_id
|       |   |   image.png
|       |   |   data.json
|       | 
|       └───question_id
|       |   ...
|   
└───train
|   |   same as test
|   
└───val
    |   same as test

File structures for the Icon645 dataset:

Icon645
|   LICENCE.md
|   metadata.json
└───colored_icons_final
    |
    └───acorn
    |   |   image_id1.png
    |   |   image_id2.png
    |   |   ...
    |   
    └───airplane
    |   |   image_id3.png
    |   |   ...
    |      
    |   ...

Citation

If the paper or the dataset inspires you, please cite us:

@inproceedings{lu2021iconqa,
  title = {IconQA: A New Benchmark for Abstract Diagram Understanding and Visual Language Reasoning},
  author = {Lu, Pan and Qiu, Liang and Chen, Jiaqi and Xia, Tony and Zhao, Yizhou and Zhang, Wei and Yu, Zhou and Liang, Xiaodan and Zhu, Song-Chun},
  booktitle = {Submitted to the 35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks},
  year = {2021}
}

License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

CC BY-NC-SA 4.0

Owner
Pan Lu
Computer Science
Pan Lu
Python script that allows you to automatically setup your Growtopia server.

AutoSetup Python script that allows you to automatically setup your Growtopia server. How To Use Firstly, install all the required modules that used i

Aspire 3 Mar 06, 2022
A collection of 100 Deep Learning images and visualizations

A collection of Deep Learning images and visualizations. The project has been developed by the AI Summer team and currently contains almost 100 images.

AI Summer 65 Sep 12, 2022
A curated list of Generative Deep Art projects, tools, artworks, and models

Generative Deep Art A curated list of Generative Deep Art projects, tools, artworks, and models Inbox Get started with making AI art in 2022 – deeplea

Filipe Calegario 251 Jan 03, 2023
level1-image-classification-level1-recsys-09 created by GitHub Classroom

level1-image-classification-level1-recsys-09 ❗ 주제 설명 COVID-19 Pandemic 상황 속 마스크 착용 유무 판단 시스템 구축 마스크 착용 여부, 성별, 나이 총 세가지 기준에 따라 총 18개의 class로 구분하는 모델 ?

6 Mar 17, 2022
Supplementary code for the paper "Meta-Solver for Neural Ordinary Differential Equations" https://arxiv.org/abs/2103.08561

Meta-Solver for Neural Ordinary Differential Equations Towards robust neural ODEs using parametrized solvers. Main idea Each Runge-Kutta (RK) solver w

Julia Gusak 25 Aug 12, 2021
A PyTorch implementation of NeRF (Neural Radiance Fields) that reproduces the results.

NeRF-pytorch NeRF (Neural Radiance Fields) is a method that achieves state-of-the-art results for synthesizing novel views of complex scenes. Here are

Yen-Chen Lin 3.2k Jan 08, 2023
Implementation of Neural Style Transfer in Pytorch

PytorchNeuralStyleTransfer Code to run Neural Style Transfer from our paper Image Style Transfer Using Convolutional Neural Networks. Also includes co

Leon Gatys 396 Dec 01, 2022
Code for the paper Hybrid Spectrogram and Waveform Source Separation

Demucs Music Source Separation This is the 3rd release of Demucs (v3), featuring hybrid source separation. For the waveform only Demucs (v2): Go this

Meta Research 4.8k Jan 04, 2023
AISTATS 2019: Confidence-based Graph Convolutional Networks for Semi-Supervised Learning

Confidence-based Graph Convolutional Networks for Semi-Supervised Learning Source code for AISTATS 2019 paper: Confidence-based Graph Convolutional Ne

MALL Lab (IISc) 56 Dec 03, 2022
DP-CL(Continual Learning with Differential Privacy)

DP-CL(Continual Learning with Differential Privacy) This is the official implementation of the Continual Learning with Differential Privacy. If you us

Phung Lai 3 Nov 04, 2022
Python Blood Vessel Topology Analysis

Python Blood Vessel Topology Analysis This repository is not being updated anymore. The new version of PyVesTo is called PyVaNe and is available at ht

6 Nov 15, 2022
Mixup for Supervision, Semi- and Self-Supervision Learning Toolbox and Benchmark

OpenSelfSup News Downstream tasks now support more methods(Mask RCNN-FPN, RetinaNet, Keypoints RCNN) and more datasets(Cityscapes). 'GaussianBlur' is

AI Lab, Westlake University 332 Jan 03, 2023
Real-Time High-Resolution Background Matting

Real-Time High-Resolution Background Matting Official repository for the paper Real-Time High-Resolution Background Matting. Our model requires captur

Peter Lin 6.1k Jan 03, 2023
Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation

Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation This repository contains the Pytorch implementation of the proposed

Devavrat Tomar 19 Nov 10, 2022
Large scale PTM - PPI relation extraction

Large-scale protein-protein post-translational modification extraction with distant supervision and confidence calibrated BioBERT The silver standard

1 Feb 25, 2022
Official code for our EMNLP2021 Outstanding Paper MindCraft: Theory of Mind Modeling for Situated Dialogue in Collaborative Tasks

MindCraft Authors: Cristian-Paul Bara*, Sky CH-Wang*, Joyce Chai This is the official code repository for the paper (arXiv link): Cristian-Paul Bara,

Situated Language and Embodied Dialogue (SLED) Research Group 14 Dec 29, 2022
A Keras implementation of YOLOv3 (Tensorflow backend)

keras-yolo3 Introduction A Keras implementation of YOLOv3 (Tensorflow backend) inspired by allanzelener/YAD2K. Quick Start Download YOLOv3 weights fro

7.1k Jan 03, 2023
Code for the paper titled "Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks" (NeurIPS 2021 Spotlight).

Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks This repository contains the code and pre-trained

Hassan Dbouk 7 Dec 05, 2022
Latex code for making neural networks diagrams

PlotNeuralNet Latex code for drawing neural networks for reports and presentation. Have a look into examples to see how they are made. Additionally, l

Haris Iqbal 18.6k Jan 01, 2023
Implementation of the paper titled "Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees"

Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees Implementation of the paper titled "Using Sampling to

MIDAS, IIIT Delhi 2 Aug 29, 2022