Attentive Implicit Representation Networks (AIR-Nets)

Related tags

Deep LearningAIR-Nets
Overview

Attentive Implicit Representation Networks (AIR-Nets)

Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV)

teaser.mov

This repository is the offical implementation of the paper

AIR-Nets: An Attention-Based Framework for Locally Conditioned Implicit Representations
by Simon Giebenhain and Bastian Goldluecke

Furthermore it provides a unified framework to execute Occupancy Networks (ONets), Convolutional Occuapncy Networks (ConvONets) and IF-Nets.

More qualitative results of our method can be found here.

Install

All experiments with AIR-Nets were run using CUDA version 11.2 and the official pytorch docker image nvcr.io/nvidia/pytorch:20.11-py3, as published by nvidia here. However, as the model is solely based on simple, common mechanisms, older CUDA and pytorch versions should also work. We provide the air-net_env.yaml file that holds all python requirements for this project. To conveniently install them automatically with anaconda you can use:

conda env create -f air-net_env.yml
conda activate air-net

AIR-Nets use farthest point sampling (FPS) to downsample the input. Run

pip install pointnet2_ops_lib/.

inorder to install the cuda implementation of FPS. Credits for this go to Erik Wijams's GitHub, from where the code was copied for convenience.

Running

python setup.py build_ext --inplace

installs the MISE algorithm (see http://www.cvlibs.net/publications/Mescheder2019CVPR.pdf) for extracting the reconstructed shapes as meshes.

When you want to run Convolutional Occupancy Networks you will have to install torch scatter using the official instructions found here.

Data Preparation

In our paper we mainly did experiments with the ShapeNet dataset, but preprocessed in two different falvours. The following describes the preprocessing for both alternatives. Note that they work individually, hence there is no need to prepare both. (When wanting to train with noise I would recommend the Onet data, since the supervision of the IF-Net data is concentrated so close to the boundary that the problem gets a bit ill-posed (adapting noise level and supervision distance can solve this, however).)

Preparing the data used in ONets and ConvONets

To parapre the ONet data clone their repository. Navigate to their repo cd occupancy_networks and run

bash scripts/download_data.sh

which will download and unpack the data automatically (consuming 73.4 GB). From the perspective of the main repository this will place the data in occupancy_networks/data/ShapeNet.

Prepating the IF-Net data

A small disclaimer: Preparing the data as in this tutorial will produce ~700GB of data. Deleting the .obj and .off files should reduce the load to 250GB. Storage demand can further be reduced by reducing the number of samples in data_processing/boundary_sampling.py. If storage is scarce the ONet data (see below) is an alternative.

This data preparation pipeline is mainly copied from IF-Nets, but slightly simplified.

Install a small library needed for the preprocessing using

cd data_processing/libmesh/
python setup.py build_ext --inplace
cd ../..

Furthermore you might need to install meshlab and xvfb using

apt-get update
apt-get install meshlab
apt-get install xvfb

To install gcc you can run sudo apt install build-essential.

To get started, download the preprocessed data by [Xu et. al. NeurIPS'19] from Google Drive into the shapenet folder.

Please note that some objects in this dataset were made watertight "incorrectly". More specifically some object parts are "double coated", such that the object boundary actually is composed of two boundaries which lie very close together. Therefor the "inside" of such objects lies in between these two boundaries, whereas the "true inside" would be classified as outside. This clearly can lead to ugly reconstructionsl, since representing such a thin "inside" is much trickier.

Then extract the files into shapenet\data using:

ls shapenet/*.tar.gz |xargs -n1 -i tar -xf {} -C shapenet/data/

Next, the input and supervision data is prepared. First, the data is converted to the .off-format and scaled (such that the longest edge of the bounding box for each object has unit length) using

python data_processing/convert_to_scaled_off.py

Then the point cloud input data can be created using

python data_processing/sample_surface.py

which samples 30.000 point uniformly distributed on the surface of the ground truth mesh. During training and testing the input point clouds will be randomly subsampled from these surface samples. The coordinates and corresponding ground truth occupancy values used for supervision during training can be generated using

python data_processing/boundary_sampling.py -sigma 0.1
python data_processing/boundary_sampling.py -sigma 0.01

where -sigma specifies the standard deviation of the normally distributed displacements added onto surface samples. Each call will generate 100.000 samples near the object's surface for which ground truth occupancy values are generated using the implicit waterproofing algorithm from IF-Nets supplementary. I have not experimented with any other values for sigma, and just copied the proposed values.

In order to remove meshes that could not be preprocessed correctly (should not be more than around 15 meshes) you should run

python data_processing/filter_corrupted.py -file 'surface_30000_samples.npy' -delete

Pay attantion with this command, i.e. the directory of all objects that don't contain the surface_30000_samples.npy file are deleted. If you chose to use a different number points, please make sure to adapt the command accordingly.

Finally the data should be located in shapenet/data.

Preparing the FAUST dataset

In order to download the FAUST dataset visit http://faust.is.tue.mpg.de and sign-up there. Once your account is approved you can download a .zip-file nameed MPI-FAUST.zip. Please place the extracted folder in the main folder, such that the data can be found in MPI-FAUST.

Training

For the training and model specification I use .yaml files. Their structure is explained in a separate markdown file here, which also has explanations which parameters can tune the model to become less memory intensive.

To train the model run

python train.py -exp_name YOUR_EXP_NAME -cfg_file configs/YOUR_CFG_FILE -data_type YOUR_DATA_TYPE

which stores results in experiments/YOUR_EXP_NAME. -cfg_file specifies the path to the config file. The content of the config file will then also be stored in experiments/config.yaml. YOUR_DATA_TYPE can either be 'ifnet', 'onet' or 'human' and dictates which dataset to use. Make sure to adapt the batch_size parameter in the config file accoridng to your GPU size.

Training progress is saved using tensorboard. You can visualize it by running

tensorboard --logdir experiments/YOUR_EXP_NAME/summary/ 

Note that checkpoints (including the optimizer) are saved after each epoch in the checkpoints folder. Therefore training can seamlessly be continued.

Generation

To generate reconstructions of the test set, run

python generate.py -exp_name YOUR_EXP_NAME -checkpoint CKPT_NUM -batch_points 400000 -method REC_METHOD 

where CKPT_NUM specifies the epoch to load the model from and -batch_points specifies how many points are batched together and may have top be adapted to your GPU size.
REC_METHOD can either be mise or mcubes. The former (and recommended) option uses the MISE algorithm for reconstruciton. The latter uses the vanilla marching cubes algorithm. For the MISE you can specifiy to additional paramters -mise_res (initial resolution, default is 64) and -mise_steps (number of refinement steps, defualt 2). (Note that we used 3 refinement steps for the main results of the dense models in the paper, just to be on the save side and not miss any details.) For the regular marching cubes algorithm you can use -mcubes_res to specify the resolution of the grid (default 128). Note that the cubic scaling quickly renders this really slow.

The command will place the generate meshes in the .OFFformat in experiments/YOUR_EXP_NAME/[email protected]_resxmise_steps/generation or experiments/YOUR_EXP_NAME/[email protected]_res/generation depending on method.

Evaluation

Running

python data_processing/evaluate.py -reconst -generation_path experiments/YOUR_EXP_NAME/evaluation_CKPT.../generation

will evaluate the generated meshes using the most common metrics: the volumetric IOU, the Chamfer distance (L1 and L2), the Normal consistency and F-score.

The results are summarized in experiment/YOUR_EXP_NAME/evaluation_CKPT.../evaluation_results.pkl by running

python data_processing/evaluate_gather.py -generation_path experiments/YOUR_EXP_NAME/evaluation_CKPT.../generation

Pretrained Models

Weights of trained models can be found here. For example create a folder experiments/PRETRAINED_MODEL, placing the corresponding config file in experiments/PRETRAINED_MODEL/configs.yaml and the weights in experiments/PRETRAINED_MODEL/checkpoints/ckpt.tar. Then run

python generate.py -exp_name PRETRAINED_MODEL -ckpt_name ckpt.tar -data_type DATA_TYPE

Contact

For questions, comments and to discuss ideas please contact Simon Giebenhain via simon.giebenhain (at] uni-konstanz {dot| de.

Citation

@inproceedings{giebenhain2021airnets,
title={AIR-Nets: An Attention-Based Framework for Locally Conditioned Implicit Representations},
author={Giebenhain, Simon and Goldluecke, Bastian},
booktitle={2021 International Conference on 3D Vision (3DV)},
year={2021},
organization={IEEE}
}

Acknowledgements

Large parts of this repository as well as the structure are copied from Julian Chibane's GitHub repository of the IF-Net paper. Please consider also citing their work, when using this repository!

This project also uses libraries form Occupancy Networks by Mescheder et al. CVPR'19 and from Convolutional Occupancy Networks by [Peng et al. ECCV'20].
We also want to thank DISN by [Xu et. al. NeurIPS'19], who provided their preprocessed ShapeNet data publicly. Please consider to cite them if you use our code.

License

Copyright (c) 2020 Julian Chibane, Max-Planck-Gesellschaft and
2021 Simon Giebenhain, Universität Konstanz

Please read carefully the following terms and conditions and any accompanying documentation before you download and/or use this software and associated documentation files (the "Software").

The authors hereby grant you a non-exclusive, non-transferable, free of charge right to copy, modify, merge, publish, distribute, and sublicense the Software for the sole purpose of performing non-commercial scientific research, non-commercial education, or non-commercial artistic projects.

Any other use, in particular any use for commercial purposes, is prohibited. This includes, without limitation, incorporation in a commercial product, use in a commercial service, or production of other artefacts for commercial purposes. For commercial inquiries, please see above contact information.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

You understand and agree that the authors are under no obligation to provide either maintenance services, update services, notices of latent defects, or corrections of defects with regard to the Software. The authors nevertheless reserve the right to update, modify, or discontinue the Software at any time.

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. You agree to cite the Implicit Functions in Feature Space for 3D Shape Reconstruction and Completion paper and the AIR-Nets: An Attention-Based Framework for Locally Conditioned Implicit Representations paper in documents and papers that report on research using this Software.

Source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree.

self-driving-car In this repository I will share the source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree. Hope this might

Andrea Palazzi 2.4k Dec 29, 2022
Face Recognition plus identification simply and fast | Python

PyFaceDetection Face Recognition plus identification simply and fast Ubuntu Setup sudo pip3 install numpy sudo pip3 install cmake sudo pip3 install dl

Peyman Majidi Moein 16 Sep 22, 2022
Implementing Vision Transformer (ViT) in PyTorch

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

2 Dec 24, 2021
Implementation for NeurIPS 2021 Submission: SparseFed

READ THIS FIRST This repo is an anonymized version of an existing repository of GitHub, for the AIStats 2021 submission: SparseFed: Mitigating Model P

2 Jun 15, 2022
This is a Python Module For Encryption, Hashing And Other stuff

EnroCrypt This is a Python Module For Encryption, Hashing And Other Basic Stuff You Need, With Secure Encryption And Strong Salted Hashing You Can Do

5 Sep 15, 2022
Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stock price.

Stock Price Prediction Using Deep Learning Univariate Time Series Predicting stock price using historical data of a company using Neural networks for

Abdultawwab Safarji 7 Nov 27, 2022
SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model

SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model Edresson Casanova, Christopher Shulby, Eren Gölge, Nicolas Michael Müller, Frede

Edresson Casanova 92 Dec 09, 2022
This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation

TransUNet This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation Usage

1.4k Jan 04, 2023
This repository contains the code for our fast polygonal building extraction from overhead images pipeline.

Polygonal Building Segmentation by Frame Field Learning We add a frame field output to an image segmentation neural network to improve segmentation qu

Nicolas Girard 186 Jan 04, 2023
This repo implements a 3D segmentation task for an airport baggage dataset.

3D CT Scan Segmentation With Occupancy Network This repo implements a 3D superresolution segmentation task for an airport baggage dataset. Our final p

Christoph Reich 2 Mar 28, 2022
Adversarially Learned Inference

Adversarially Learned Inference Code for the Adversarially Learned Inference paper. Compiling the paper locally From the repo's root directory, $ cd p

Mohamed Ishmael Belghazi 308 Sep 24, 2022
Patch-Based Deep Autoencoder for Point Cloud Geometry Compression

Patch-Based Deep Autoencoder for Point Cloud Geometry Compression Overview The ever-increasing 3D application makes the point cloud compression unprec

17 Dec 05, 2022
Fuzzer for Linux Kernel Drivers

difuze: Fuzzer for Linux Kernel Drivers This repo contains all the sources (including setup scripts), you need to get difuze up and running. Tested on

seclab 344 Dec 27, 2022
Implementation of "A MLP-like Architecture for Dense Prediction"

A MLP-like Architecture for Dense Prediction (arXiv) Updates (22/07/2021) Initial release. Model Zoo We provide CycleMLP models pretrained on ImageNet

Shoufa Chen 244 Dec 27, 2022
李云龙二次元风格化!打滚卖萌,使用了animeGANv2进行了视频的风格迁移

李云龙二次元风格化!一键star、fork,你也可以生成这样的团长! 打滚卖萌求star求fork! 0.效果展示 视频效果前往B站观看效果最佳:李云龙二次元风格化: github开源repo:李云龙二次元风格化 百度AIstudio开源地址,一键fork即可运行: 李云龙二次元风格化!一键fork

oukohou 44 Dec 04, 2022
ICCV2021 Expert-Goal Trajectory Prediction

ICCV 2021: Where are you heading? Dynamic Trajectory Prediction with Expert Goal Examples This repository contains the code for the paper Where are yo

hz 21 Dec 12, 2022
Code for Deep Single-image Portrait Image Relighting

Deep Single-Image Portrait Relighting [Project Page] Hao Zhou, Sunil Hadap, Kalyan Sunkavalli, David W. Jacobs. In ICCV, 2019 Overview Test script for

438 Jan 05, 2023
Graph neural network message passing reframed as a Transformer with local attention

Adjacent Attention Network An implementation of a simple transformer that is equivalent to graph neural network where the message passing is done with

Phil Wang 49 Dec 28, 2022
Volsdf - Volume Rendering of Neural Implicit Surfaces

Volume Rendering of Neural Implicit Surfaces Project Page | Paper | Data This re

Lior Yariv 221 Jan 07, 2023
Lama-cleaner: Image inpainting tool powered by LaMa

Lama-cleaner: Image inpainting tool powered by LaMa

Qing 5.8k Jan 05, 2023