This repository contains small projects related to Neural Networks and Deep Learning in general.

Overview

ILearnDeepLearning.py

NumPy NN animation

Description

People say that nothing develops and teaches you like getting your hands dirty. This repository contains small projects mostly related to Deep Learning but also Data Science in general. Subjects are closely linekd with articles I publish on Medium and are intended to complement those blog posts. For me it is a way to document my learning process, but also to help others understand neural network related issues. I hope that the content of the repository will turn out to be interesting and, above all, useful. I encourage you both to read my posts as well as to check how the code works in the action.

Hit the ground running

# clone repository
git clone https://github.com/SkalskiP/ILearnDeepLearning.py.git

# navigate to main directory
cd ILearnDeepLearning.py

# set up and activate python environment
apt-get install python3-venv
python3 -m venv .env
source .env/bin/activate

# install all required packages
pip install -r requirements.txt

Deep Dive into Math Behind Deep Networks

Medium articule - Source code

This project is mainly focused on visualizing quite complex issues related to gradient descent, activation functions and visualization of classification boundaries while teaching the model. It is a code that complements the issues described in more detail in the article. Here are some of the visualizations that have been created.

Keras model frames Keras class boundries

Figure 1. A classification boundaries graph created in every iteration of the Keras model.
Finally, the frames were combined to create an animation.

Gradient descent

Figure 2. Visualization of the gradient descent.

Let’s code a Neural Network in plain NumPy

Medium articule - Source code

After a theoretical introduction, the time has come for practical implementation of the neural network using NumPy. In this notebook you will find full source code and a comparison of the performance of the basic implementation with the model created with Keras. You can find a wider commentary to understand the order and meaning of performed functions in a related article.

NumPy NN animation

Figure 3. Visualisation of the classification boundaries achieved with simple NumPy model

Preventing Deep Neural Network from Overfitting

Medium articule - Source code

This time I focused on the analysis of the reasons for overfitting and ways to prevent it. I made simulations of neural network regulation for different lambda coefficients, analyzing the change of values in the weight matrix. Take a look at the visualizations that were created in the process.

Change of accuracy

Figure 4. Classification boundaries created by: top right corner - linear regression;
bottom left corner - neural network; bottom right corner - neural network with regularisation

Change of accuracy

Figure 5. Change of accuracy values in subsequent epochs during neural network learning.

How to train Neural Network faster with optimizers?

Medium articule - Source code

As I worked on the last article, I had the opportunity to create my own neural network using only Numpy. It was a very challenging task, but at the same time it significantly broadened my understanding of the processes that take place inside the NN. Among others, this experience made me truly realize how many factors influence neural net's performance. Selected architecture,proper hyperparameter values or even correct initiation of parameters, are just some of those things... This time however, we will focus on the decision that has a huge impact on learning process speed, as well as the accuracy of obtained predictions - the choice of the optimization strategy.

Change of accuracy

Figure 6. Examples of points which are a problem for optimization algorithms.

Change of accuracy

Figure 7. Optimizers comparison.

Simple Method of Creating Animated Graphs

Medium articule - Source code

Both in my articles and projects I try to create interesting visualizations, which very often allow me to communicate my ideas much more effectively. I decided to create a short tutorial to show you how to easily create animated visualizations using Matplotlib. I also encourage you to read my post where I described, among other things, how to create a visualization of neural network learning process.

Change of accuracy

Figure 8. Lorenz Attractor created using the Matplotlib animation API.

Gentle Dive into Math Behind Convolutional Neural Networks

Medium articule - Source code

In this post on Medium I focused on the theoretical issues related to CNNs. It is a preparation for the upcoming mini project, which aims to create my own, simple implementation of this type of the Neural Network. As a result, this section of the repository is quite narrow and includes mainly simple visualizations of the effects of a convolution with a selected filter.

Convolution

Figure 9. Convolutionary effect with selected filters.

Chess, rolls or basketball? Let's create a custom object detection model

Medium articule - Source code

My posts on the Medium are usually very theoretical - I tend to analyse and describe the algorithms that define how Neural Networks work. This time, however, I decided to break this trend and show my readers how easy it is to train your own YOLO model, capable of detecting any objects we choose. In order to achieve this goal, we will need help from a very useful and easy-to-use implementation of YOLO. In short, not much coding, but a huge effect.

Convolution

Figure 10. Detection of players moving around the basketball court,
based on YouTube-8M dataset.

Knowing What and Why? - Explaining Image Classifier Predictions

Medium articule - Source code

As we implement highly responsible Computer Vision systems, it is becoming progressively clear that we must provide not only predictions but also explanations, as to what influenced its decision. In this post, I compared and benchmarked the most commonly used libraries for explaining the model predictions in the field of Image Classification - Eli5, LIME, and SHAP. I investigated the algorithms that they leverage, as well as compared the efficiency and quality of the provided explanations.

Explaining predictions

Figure 11. Comparison of explanations provided by ELI5, LIME and SHAP

License

This project is licensed under the MIT License - see the LICENSE.md file for details

Interesting materials and ideas

This is a place where I collect links to interesting articles and papers, which I hope will become the basis for my next projects in the future.

  1. Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings
  2. Sequence to Sequence Learning with Neural Networks
  3. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
  4. BLEU: a Method for Automatic Evaluation of Machine Translation
  5. Neural Machine Translation by Jointly Learning to Align and Translate
  6. A (Long) Peek into Reinforcement Learning
  7. Why Momentum Really Works
  8. Improving the way neural networks learn
  9. Classification and Loss Evaluation - Softmax and Cross Entropy Loss
Owner
Piotr Skalski
AI Engineer @unleashlive and @ultralytics | Founder @ makesense.ai | Computer Science Graduate @ AGH UST Cracow | Civil Engineering Graduate @ Cracow UoT
Piotr Skalski
Awesome Transformers in Medical Imaging

This repo supplements our Survey on Transformers in Medical Imaging Fahad Shamshad, Salman Khan, Syed Waqas Zamir, Muhammad Haris Khan, Munawar Hayat,

Fahad Shamshad 666 Jan 06, 2023
TrackFormer: Multi-Object Tracking with Transformers

TrackFormer: Multi-Object Tracking with Transformers This repository provides the official implementation of the TrackFormer: Multi-Object Tracking wi

Tim Meinhardt 321 Dec 29, 2022
Unofficial PyTorch implementation of Attention Free Transformer (AFT) layers by Apple Inc.

aft-pytorch Unofficial PyTorch implementation of Attention Free Transformer's layers by Zhai, et al. [abs, pdf] from Apple Inc. Installation You can i

Rishabh Anand 184 Dec 12, 2022
Official repo for SemanticGAN https://nv-tlabs.github.io/semanticGAN/

SemanticGAN This is the official code for: Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalizat

151 Dec 28, 2022
Import Python modules from dicts and JSON formatted documents.

Paker Paker is module for importing Python packages/modules from dictionaries and JSON formatted documents. It was inspired by httpimporter. Important

Wojciech Wentland 1 Sep 07, 2022
A pytorch implementation of Detectron. Both training from scratch and inferring directly from pretrained Detectron weights are available.

Use this instead: https://github.com/facebookresearch/maskrcnn-benchmark A Pytorch Implementation of Detectron Example output of e2e_mask_rcnn-R-101-F

Roy 2.8k Dec 29, 2022
Diverse Branch Block: Building a Convolution as an Inception-like Unit

Diverse Branch Block: Building a Convolution as an Inception-like Unit (PyTorch) (CVPR-2021) DBB is a powerful ConvNet building block to replace regul

253 Dec 24, 2022
The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021)

The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021) Arash Vahdat*   ·   Karsten Kreis*   ·  

NVIDIA Research Projects 238 Jan 02, 2023
Official code for "On the Frequency Bias of Generative Models", NeurIPS 2021

Frequency Bias of Generative Models Generator Testbed Discriminator Testbed This repository contains official code for the paper On the Frequency Bias

35 Nov 01, 2022
TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Ta

Wenyuan 68 Jan 04, 2023
NeuroGen: activation optimized image synthesis for discovery neuroscience

NeuroGen: activation optimized image synthesis for discovery neuroscience NeuroGen is a framework for synthesizing images that control brain activatio

3 Aug 17, 2022
Implementation of Memformer, a Memory-augmented Transformer, in Pytorch

Memformer - Pytorch Implementation of Memformer, a Memory-augmented Transformer, in Pytorch. It includes memory slots, which are updated with attentio

Phil Wang 60 Nov 06, 2022
This project hosts the code for implementing the ISAL algorithm for object detection and image classification

Influence Selection for Active Learning (ISAL) This project hosts the code for implementing the ISAL algorithm for object detection and image classifi

25 Sep 11, 2022
"Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback"

This is code repo for our EMNLP 2017 paper "Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback", which implements the A2C algorithm on top of a neural encoder-

Khanh Nguyen 131 Oct 21, 2022
Convolutional Neural Network to detect deforestation in the Amazon Rainforest

Convolutional Neural Network to detect deforestation in the Amazon Rainforest This project is part of my final work as an Aerospace Engineering studen

5 Feb 17, 2022
Can we learn gradients by Hamiltonian Neural Networks?

Can we learn gradients by Hamiltonian Neural Networks? This project was carried out as part of the Optimization for Machine Learning course (CS-439) a

2 Aug 22, 2022
[3DV 2021] Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation

Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation This is the official implementation for the method described in Ch

Jiaxing Yan 27 Dec 30, 2022
maximal update parametrization (µP)

Maximal Update Parametrization (μP) and Hyperparameter Transfer (μTransfer) Paper link | Blog link In Tensor Programs V: Tuning Large Neural Networks

Microsoft 694 Jan 03, 2023
Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges for the practitioner

Sparse network learning with snlpy Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges

Andrew Stolman 1 Apr 30, 2021
Multi Camera Calibration

Multi Camera Calibration 'modules/camera_calibration/app/camera_calibration.cpp' is for calculating extrinsic parameter of each individual cameras. 'm

7 Dec 01, 2022