Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset

Overview

SW-CV-ModelZoo

Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset


Framework: TF/Keras 2.7

Training SQLite DB built using fire-egg's tools: https://github.com/fire-eggs/Danbooru2019

Currently training on Danbooru2021, 512px SFW subset (sans the rating:q images that had been included in the 2022-01-21 release of the dataset)

Reference:

Anonymous, The Danbooru Community, & Gwern Branwen; “Danbooru2021: A Large-Scale Crowdsourced and Tagged Anime Illustration Dataset”, 2022-01-21. Web. Accessed 2022-01-28 https://www.gwern.net/Danbooru2021


Journal

06/02/2022: great news crew! TRC allowed me to use a bunch of TPUs!

To make better use of this amount of compute I had to overhaul a number of components, so a bunch of things are likely to have fallen to bitrot in the process. I can only guarantee NFNet can work pretty much as before with the right arguments.
NFResNet changes should have left it retrocompatible with the previous version.
ResNet has been streamlined to be mostly in line with the Bag-of-Tricks paper (arXiv:1812.01187) with the exception of the stem. It is not compatible with the previous version of the code.

The training labels have been included in the 2021_0000_0899 folder for convenience.
The list of files used for training is going to be uploaded as a GitHub Release.

Now for some numbers:
compared to my previous best run, the one that resulted in NFNetL1V1-100-0.57141:

  • I'm using 1.86x the amount of images: 2.8M vs 1.5M
  • I'm training bigger models: 61M vs 45M params
  • ... in less time: 232 vs 700 hours of processor time
  • don't get me started on actual wall clock time
  • with a few amenities thrown in: ECA for channel attention, SiLU activation

And it's all thanks to the folks at TRC, so shout out to them!

I currently have a few runs in progress across a couple of dimensions:

  • effect of model size with NFNet L0/L1/L2, with SiLU and ECA for all three of them
  • effect of activation function with NFNet L0, with SiLU/HSwish/ReLU, no ECA

Once the experiments are over, the plan is to select the network definitions that lay on the Pareto curve between throughput and F1 score and release the trained weights.

One last thing.
I'd like to call your attention to the tools/cleanlab_stuff.py script.
It reads two files: one with the binarized labels from the database, the other with the predicted probabilities.
It then uses the cleanlab package to estimate whether if an image in a set could be missing a given label. At the end it stores its conclusions in a json file.
This file could, potentially, be used in some tool to assist human intervention to add the missing tags.

You might also like...
Human head pose estimation using Keras over TensorFlow.
Human head pose estimation using Keras over TensorFlow.

RealHePoNet: a robust single-stage ConvNet for head pose estimation in the wild.

Graph Neural Networks with Keras and Tensorflow 2.

Welcome to Spektral Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to

QKeras: a quantization deep learning library for Tensorflow Keras

QKeras github.com/google/qkeras QKeras 0.8 highlights: Automatic quantization using QKeras; Stochastic behavior (including stochastic rouding) is disa

Hyperparameter Optimization for TensorFlow, Keras and PyTorch
Hyperparameter Optimization for TensorFlow, Keras and PyTorch

Hyperparameter Optimization for Keras Talos • Key Features • Examples • Install • Support • Docs • Issues • License • Download Talos radically changes

MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.

MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage

Deep GPs built on top of TensorFlow/Keras and GPflow

GPflux Documentation | Tutorials | API reference | Slack What does GPflux do? GPflux is a toolbox dedicated to Deep Gaussian processes (DGP), the hier

tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

Build tensorflow keras model pipelines in a single line of code. Created by Ram Seshadri. Collaborators welcome. Permission granted upon request.
Build tensorflow keras model pipelines in a single line of code. Created by Ram Seshadri. Collaborators welcome. Permission granted upon request.

deep_autoviml Build keras pipelines and models in a single line of code! Table of Contents Motivation How it works Technology Install Usage API Image

Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)
Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Releases(models_db2021_5500_2022_10_21)
  • models_db2021_5500_2022_10_21(Oct 21, 2022)

    ConvNext B, ViT B16
    Trained on Danbooru2021 512px SFW subset, modulos 0000-0899
    top 5500 tags (2021_0000_0899_5500/selected_tags.csv)
    alpha to white
    padding to make the image square is white
    channel order is BGR, input is 0...255, scaled to -1...1 within the model

    | run_name | definition_name | params_human | image_size | thres | F1 | |:---------------------------------|:------------------|:---------------|-------------:|--------:|-------:| | ConvNextBV1_09_25_2022_05h13m55s | B | 93.2M | 448 | 0.3673 | 0.6941 | | ViTB16_09_25_2022_04h53m38s | B16 | 90.5M | 448 | 0.3663 | 0.6918 |

    Source code(tar.gz)
    Source code(zip)
    ConvNextBV1_09_25_2022_05h13m55s.7z(322.58 MB)
    ViTB16_09_25_2022_04h53m38s.7z(312.96 MB)
  • convnexts_db2021_2022_03_22(Mar 22, 2022)

    ConvNext, T/S/B
    Trained on Danbooru2021 512px SFW subset, modulos 0000-0899
    alpha to white
    padding to make the image square is white
    channel order is BGR, input is 0...255, scaled to -1...1 within the model

    | run_name | definition_name | params_human | image_size | thres | F1 | |:---------------------------------|:------------------|:---------------|-------------:|--------:|-------:| | ConvNextBV1_03_10_2022_21h41m23s | B | 90.01M | 448 | 0.3372 | 0.6892 | | ConvNextSV1_03_11_2022_17h49m56s | S | 51.28M | 384 | 0.3301 | 0.6798 | | ConvNextTV1_03_05_2022_15h56m42s | T | 29.65M | 320 | 0.3259 | 0.6595 |

    Source code(tar.gz)
    Source code(zip)
    ConvNextBV1_03_10_2022_21h41m23s.7z(311.29 MB)
    ConvNextSV1_03_11_2022_17h49m56s.7z(177.36 MB)
    ConvNextTV1_03_05_2022_15h56m42s.7z(102.96 MB)
  • nfnets_db2021_2022_03_04(Mar 4, 2022)

    NFNet, L0/L1/L2 (based on timm Lx model definitions) Trained on Danbooru2021 512px SFW subset, modulos 0000-0899 alpha to white padding to make the image square is white channel order is BGR, input is 0...255, scaled to -1...1 within the model

    | run_name | definition_name | params_human | image_size | thres | F1 | |:---------------------------------|:------------------|:---------------|-------------:|--------:|-------:| | NFNetL2V1_02_20_2022_10h27m08s | L2 | 60.96M | 448 | 0.3231 | 0.6785 | | NFNetL1V1_02_17_2022_20h18m38s | L1 | 45.65M | 384 | 0.3259 | 0.6691 | | NFNetL0V1_02_10_2022_17h50m14s | L0 | 27.32M | 320 | 0.3190 | 0.6509 |

    Source code(tar.gz)
    Source code(zip)
    NFNetL0V1_02_10_2022_17h50m14s.7z(94.98 MB)
    NFNetL1V1_02_17_2022_20h18m38s.7z(157.97 MB)
    NFNetL2V1_02_20_2022_10h27m08s.7z(210.49 MB)
  • nfnet_tpu_training(Feb 6, 2022)

  • NFNetL1V1-100-0.57141(Dec 31, 2021)

    • NFNet, L1 (based on timm Lx model definitions), 100 epochs, F1 @ 0.4 at the end of the 100th epoch was 0.57141
    • Trained on Danbooru2020 512px SFW subset, modulos 0000-0599
    • 320px per side
    • alpha to white
    • padding to make the image square is white
    • channel order is BGR, scaled to 0-1
    • mixup alpha = 0.2 during epochs 76-100
    • analyze_metrics on Danbooru2020 original set, modulos 0984-0999: {'thres': 0.3485, 'F1': 0.6133, 'F2': 0.6133, 'MCC': 0.6094, 'A': 0.9923, 'R': 0.6133, 'P': 0.6133}
    • analyze_metrics on image IDs 4970000-5000000: {'thres': 0.3148, 'F1': 0.5942, 'F2': 0.5941, 'MCC': 0.5892, 'A': 0.9901, 'R': 0.5940, 'P': 0.5943}
    Source code(tar.gz)
    Source code(zip)
    NFNetL1V1-100-0.57141.7z(158.09 MB)
Python code for the paper How to scale hyperparameters for quickshift image segmentation

How to scale hyperparameters for quickshift image segmentation Python code for the paper How to scale hyperparameters for quickshift image segmentatio

0 Jan 25, 2022
Collect some papers about transformer with vision. Awesome Transformer with Computer Vision (CV)

Awesome Visual-Transformer Collect some Transformer with Computer-Vision (CV) papers. If you find some overlooked papers, please open issues or pull r

dkliang 2.8k Jan 08, 2023
Re-implememtation of MAE (Masked Autoencoders Are Scalable Vision Learners) using PyTorch.

mae-repo PyTorch re-implememtation of "masked autoencoders are scalable vision learners". In this repo, it heavily borrows codes from codebase https:/

Peng Qiao 1 Dec 14, 2021
A-ESRGAN aims to provide better super-resolution images by using multi-scale attention U-net discriminators.

A-ESRGAN: Training Real-World Blind Super-Resolution with Attention-based U-net Discriminators The authors are hidden for the purpose of double blind

77 Dec 16, 2022
Sub-tomogram-Detection - Deep learning based model for Cyro ET Sub-tomogram-Detection

Deep learning based model for Cyro ET Sub-tomogram-Detection High degree of stru

Siddhant Kumar 2 Feb 04, 2022
BigbrotherBENL - Face recognition on the Big Brother episodes in Belgium and the Netherlands.

BigbrotherBENL - Face recognition on the Big Brother episodes in Belgium and the Netherlands. Keeping statistics of whom are most visible and recognisable in the series and wether or not it has an im

Frederik 2 Jan 04, 2022
A curated list of references for MLOps

A curated list of references for MLOps

Larysa Visengeriyeva 9.3k Jan 07, 2023
This is the pytorch implementation for the paper: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation, which is accepted to ICCV2021.

GMPQ: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation This is the pytorch implementation for the paper: Generalizable Mix

18 Sep 02, 2022
Code and project page for ICCV 2021 paper "DisUnknown: Distilling Unknown Factors for Disentanglement Learning"

DisUnknown: Distilling Unknown Factors for Disentanglement Learning See introduction on our project page Requirements PyTorch = 1.8.0 torch.linalg.ei

Sitao Xiang 24 May 16, 2022
Applying curriculum to meta-learning for few shot classification

Curriculum Meta-Learning for Few-shot Classification We propose an adaptation of the curriculum training framework, applicable to state-of-the-art met

Stergiadis Manos 3 Oct 25, 2022
Efficient Two-Step Networks for Temporal Action Segmentation (Neurocomputing 2021)

Efficient Two-Step Networks for Temporal Action Segmentation This repository provides a PyTorch implementation of the paper Efficient Two-Step Network

8 Apr 16, 2022
An official reimplementation of the method described in the INTERSPEECH 2021 paper - Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

Facebook Research 253 Jan 06, 2023
A Pytree Module system for Deep Learning in JAX

Treex A Pytree-based Module system for Deep Learning in JAX Intuitive: Modules are simple Python objects that respect Object-Oriented semantics and sh

Cristian Garcia 216 Dec 20, 2022
Tweesent-back - Tweesent backend uses fastAPI as the web framework

TweeSent Backend Tweesent backend. This repo uses fastAPI as the web framework.

0 Mar 26, 2022
The most simple and minimalistic navigation dashboard.

Navigation This project follows a goal to have simple and lightweight dashboard with different links. I use it to have my own self-hosted service dash

Yaroslav 23 Dec 23, 2022
PyBullet CartPole and Quadrotor environments—with CasADi symbolic a priori dynamics—for learning-based control and reinforcement learning

safe-control-gym Physics-based CartPole and Quadrotor Gym environments (using PyBullet) with symbolic a priori dynamics (using CasADi) for learning-ba

Dynamic Systems Lab 300 Dec 28, 2022
HyperDict - Self linked dictionary in Python

Hyper Dictionary Advanced python dictionary(hash-table), which can link it-self

8 Feb 06, 2022
[IEEE Transactions on Computational Imaging] Self-Gated Memory Recurrent Network for Efficient Scalable HDR Deghosting

Few-shot Deep HDR Deghosting This repository contains code and pretrained models for our paper: Self-Gated Memory Recurrent Network for Efficient Scal

Susmit Agrawal 4 Dec 29, 2021
Freecodecamp Scientific Computing with Python Certification; Solution for Challenge 2: Time Calculator

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Hellen Namulinda 0 Feb 26, 2022
All materials of Cassandra Event, Udyam'22

Cassandra 2022 Workspace Workshop Materials Workshop-1 Workshop-2 Workshop-3 Workshop-4 Assignments Assignment-1 Assignment-2 Assignment-3 Resources P

36 Dec 31, 2022