Code accompanying "Evolving spiking neuron cellular automata and networks to emulate in vitro neuronal activity," accepted to IEEE SSCI ICES 2021

Overview

Evolving-spiking-neuron-cellular-automata-and-networks-to-emulate-in-vitro-neuronal-activity

Code accompanying "Evolving spiking neuron cellular automata and networks to emulate in vitro neuronal activity" [1], accepted to the International Conference on Evolvable Systems (IEEE SSCI 2021).

ICES page: https://attend.ieee.org/ssci-2021/international-conference-on-evolvable-systems-ices/

STRUCTURE:
There are two folders in the main directory.

Resources contains the neural data used in this study as .txt files. The data were collected by Wagenaar et al. [2], and the full open dataset can be found here: http://neurodatasharing.bme.gatech.edu/development-data/html/index.html

Each file contains the time (column 1) and recording channel (column 2) of each spike detected in the data.

The project code is found in the src-folder. The code to run the models and evolutionary algorithm is found here. Additionally there is a separate folder for plotting results.

RUNNING SINGLE MODEL:
A single model with desired parameters can be run with the Model.py file. Parameters are set at the top of this file.

RUNNING EVOLUTIONARY ALGORITHM:
To run the evolutionary algorithm, the Main.py file is run and parameters are set in the default_parameters dict.

RUNNING SAVED MODEL:
To run a saved model, the RunSavedModel.py files is run from terminal with the first argument being the GraphML file and the second argument being simulation duration in seconds.

RUNNING BATCH FILES:
Multiple simulations can be run by passing batch files as arguments when running Main.py. Batch files must be .csv files. An example can be seen in batch_example.csv. Each row is a separate run.

EXTERNAL LIBRARIES:

  • Pandas
  • Numpy
  • NetworkX
  • Scipy
  • Matplotlib
  • Pylab
  • Seaborn
  • Pandas

[1] J Jensen Farner, H Weydahl, CR Jahren, O Huse Ramstad, S Nichele, and K Heiney. "Evolving spiking neuron cellular automata and networks to emulate in vitro neuronal activity," International Conference on Evolvable Systems (IEEE Symposium Series on Computational Intelligence 2021), 2021.

[2] DA Wagenaar, J Pine, and SM Potter, "An extremely rich repertoire of bursting patterns during the development of cortical cultures," BMC Neuroscience, 7(1):11, 2006.

Owner
SOCRATES: Self-Organizing Computational substRATES
SOCRATES is a long-term time horizon project seeking radical breakthroughs toward efficient and powerful data analysis available everywhere.
SOCRATES: Self-Organizing Computational substRATES
Human Pose estimation with TensorFlow framework

Human Pose Estimation with TensorFlow Here you can find the implementation of the Human Body Pose Estimation algorithm, presented in the DeeperCut and

Eldar Insafutdinov 1.1k Dec 29, 2022
Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Learning Generative Models of Textured 3D Meshes from Real-World Images This is the reference implementation of "Learning Generative Models of Texture

Dario Pavllo 115 Jan 07, 2023
Unofficial implementation of Pix2SEQ

Unofficial-Pix2seq: A Language Modeling Framework for Object Detection Unofficial implementation of Pix2SEQ. Please use this code with causion. Many i

159 Dec 12, 2022
NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.

NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions Overview NUANCED is a user-centric conversational recommen

Facebook Research 18 Dec 28, 2021
The official repository for "Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds"

Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds The why Im

3 Mar 29, 2022
《Deep Single Portrait Image Relighting》(ICCV 2019)

Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page] This is part of the Deep Portrait Relighting project. If you find

62 Dec 21, 2022
Understanding the Effects of Datasets Characteristics on Offline Reinforcement Learning

Understanding the Effects of Datasets Characteristics on Offline Reinforcement Learning Kajetan Schweighofer1, Markus Hofmarcher1, Marius-Constantin D

Institute for Machine Learning, Johannes Kepler University Linz 17 Dec 28, 2022
Implementation of UNET architecture for Image Segmentation.

Semantic Segmentation using UNET This is the implementation of UNET on Carvana Image Masking Kaggle Challenge About the Dataset This dataset contains

Anushka agarwal 4 Dec 21, 2021
This is the official source code of "BiCAT: Bi-Chronological Augmentation of Transformer for Sequential Recommendation".

BiCAT This is our TensorFlow implementation for the paper: "BiCAT: Sequential Recommendation with Bidirectional Chronological Augmentation of Transfor

John 15 Dec 06, 2022
ComputerVision - This repository aims at realized easy network architecture

ComputerVision This repository aims at realized easy network architecture Colori

DongDong 4 Dec 14, 2022
Automatic Image Background Subtraction

Automatic Image Background Subtraction This repo contains set of scripts for automatic one-shot image background subtraction task using the following

Oleg Sémery 6 Dec 05, 2022
MLP-Numpy - A simple modular implementation of Multi Layer Perceptron in pure Numpy.

MLP-Numpy A simple modular implementation of Multi Layer Perceptron in pure Numpy. I used the Iris dataset from scikit-learn library for the experimen

Soroush Omranpour 1 Jan 01, 2022
Good Semi-Supervised Learning That Requires a Bad GAN

Good Semi-Supervised Learning that Requires a Bad GAN This is the code we used in our paper Good Semi-supervised Learning that Requires a Bad GAN Ziha

Zhilin Yang 177 Dec 12, 2022
A new data augmentation method for extreme lighting conditions.

Random Shadows and Highlights This repo has the source code for the paper: Random Shadows and Highlights: A new data augmentation method for extreme l

Osama Mazhar 35 Nov 26, 2022
BEGAN in PyTorch

BEGAN in PyTorch This project is still in progress. If you are looking for the working code, use BEGAN-tensorflow. Requirements Python 2.7 Pillow tqdm

Taehoon Kim 260 Dec 07, 2022
Paddle pit - Rethinking Spatial Dimensions of Vision Transformers

基于Paddle实现PiT ——Rethinking Spatial Dimensions of Vision Transformers,arxiv 官方原版代

Hongtao Wen 4 Jan 15, 2022
DEMix Layers for Modular Language Modeling

DEMix This repository contains modeling utilities for "DEMix Layers: Disentangling Domains for Modular Language Modeling" (Gururangan et. al, 2021). T

Suchin 43 Nov 11, 2022
Focal Loss for Dense Rotation Object Detection

Convert ResNets weights from GluonCV to Tensorflow Abstract GluonCV released some new resnet pre-training weights and designed some new resnets (such

17 Nov 24, 2021
Subpopulation detection in high-dimensional single-cell data

PhenoGraph for Python3 PhenoGraph is a clustering method designed for high-dimensional single-cell data. It works by creating a graph ("network") repr

Dana Pe'er Lab 42 Sep 05, 2022
PyTorch-Multi-Style-Transfer - Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 906 Jan 04, 2023