Reference implementation for Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Overview

Diffusion Probabilistic Models

This repository provides a reference implementation of the method described in the paper:

Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, Surya Ganguli
International Conference on Machine Learning, 2015
http://arxiv.org/abs/1503.03585

This implementation builds a generative model of data by training a Gaussian diffusion process to transform a noise distribution into a data distribution in a fixed number of time steps. The mean and covariance of the diffusion process are parameterized using deep supervised learning. The resulting model is tractable to train, easy to exactly sample from, allows the probability of datapoints to be cheaply evaluated, and allows straightforward computation of conditional and posterior distributions.

Using the Software

In order to train a diffusion probabilistic model on the default dataset of MNIST, install dependencies (see below), and then run python train.py.

Dependencies

  1. Install Blocks and its dependencies following these instructions
  2. Setup Fuel and download MNIST following these instructions.

As of October 16, 2015 this code requires the bleeding edge, rather than stable, versions of both Blocks and Fuel. (thanks to David Hofmann for pointing out that the stable release will not work due to an interface change)

Output

The objective function being minimized is the bound on the negative log likelihood in bits per pixel, minus the negative log likelihood under an identity-covariance Gaussian model. That is, it is the negative of the number in the rightmost column in Table 1 in the paper.

Logging information is printed to the console once per training epoch, including the current value of the objective on the training set.

Figures showing samples from the model, parameters, gradients, and training progress are also output periodically (every 25 epochs by default -- see train.py).

The samples from the model are of three types -- standard samples, samples inpainting the left half of masked images, and samples denoising images with Gaussian noise added (by default, the signal-to-noise ratio is 1). This demonstrates the straightforward way in which inpainting, denoising, and sampling from a posterior in general can be performed using this framework.

Here are samples generated by this code after 825 training epochs on MNIST, trained using the command run train.py:

Here are samples generated by this code after 1700 training epochs on CIFAR-10, trained using the command run train.py --batch-size 200 --dataset CIFAR10 --model-args "n_hidden_dense_lower=1000,n_hidden_dense_lower_output=5,n_hidden_conv=100,n_layers_conv=6,n_layers_dense_lower=6,n_layers_dense_upper=4,n_hidden_dense_upper=100":

Miscellaneous

Different nonlinearities - In the paper, we used softplus units in the convolutional layers, and tanh units in the dense layers. In this implementation, I use leaky ReLU units everywhere.

Original source code - This repository is a refactoring of the code used to run the experiments in the published paper. In the spirit of reproducibility, if you email me a request I am willing to share the original source code. It is poorly commented and held together with duct tape though. For most applications, you will be better off using the reference implementation provided here.

Contact - I would love to hear from you. Let me know what goes right/wrong! [email protected]

Owner
Jascha Sohl-Dickstein
Jascha Sohl-Dickstein
PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentation.

Shape-aware Convolutional Layer (ShapeConv) PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentatio

Hanchao Leng 82 Dec 29, 2022
NeuPy is a Tensorflow based python library for prototyping and building neural networks

NeuPy v0.8.2 NeuPy is a python library for prototyping and building neural networks. NeuPy uses Tensorflow as a computational backend for deep learnin

Yurii Shevchuk 729 Jan 03, 2023
Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface

pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla

447 Jan 05, 2023
Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis"

Beyond the Spectrum Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis" by Yang He, Ning Yu, Margret Keu

Yang He 27 Jan 07, 2023
Source code for "Roto-translated Local Coordinate Framesfor Interacting Dynamical Systems"

Roto-translated Local Coordinate Frames for Interacting Dynamical Systems Source code for Roto-translated Local Coordinate Frames for Interacting Dyna

Miltiadis Kofinas 19 Nov 27, 2022
GNN-based Recommendation Benchma

GRecX A Fair Benchmark for GNN-based Recommendation Preliminary Comparison DiffNet-Yelp dataset (featureless) Algo 73 Oct 17, 2022

Efficient training of deep recommenders on cloud.

HybridBackend Introduction HybridBackend is a training framework for deep recommenders which bridges the gap between evolving cloud infrastructure and

Alibaba 111 Dec 23, 2022
Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression.

Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression. Not an official Google product. Me

Google Research 27 Dec 12, 2022
Put blind watermark into a text with python

text_blind_watermark Put blind watermark into a text. Can be used in Wechat dingding ... How to Use install pip install text_blind_watermark Alice Pu

郭飞 164 Dec 30, 2022
OOD Dataset Curator and Benchmark for AI-aided Drug Discovery

🔥 DrugOOD 🔥 : OOD Dataset Curator and Benchmark for AI Aided Drug Discovery This is the official implementation of the DrugOOD project, this is the

108 Dec 17, 2022
Simulation of the solar system using various nummerical methods

solar-system Simulation of the solar system using various nummerical methods Download the repo Make shure matplotlib, scipy etc. are installed execute

Caspar 7 Jul 15, 2022
Multivariate Boosted TRee

Multivariate Boosted TRee What is MBTR MBTR is a python package for multivariate boosted tree regressors trained in parameter space. The package can h

SUPSI-DACD-ISAAC 61 Dec 19, 2022
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness

Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness Code for Paper "Imbalanced Gradients: A Subtle Cause of Overestimated Adv

Hanxun Huang 11 Nov 30, 2022
HAR-stacked-residual-bidir-LSTMs - Deep stacked residual bidirectional LSTMs for HAR

HAR-stacked-residual-bidir-LSTM The project is based on this repository which is presented as a tutorial. It consists of Human Activity Recognition (H

Guillaume Chevalier 287 Dec 27, 2022
Language Used: Python . Made in Jupyter(Anaconda) notebook.

FACE-DETECTION-ATTENDENCE-SYSTEM Made in Jupyter(Anaconda) notebook. Language Used: Python Steps to perform before running the program : Install Anaco

1 Jan 12, 2022
This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation

TransUNet This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation Usage

1.4k Jan 04, 2023
Two-stage CenterNet

Probabilistic two-stage detection Two-stage object detectors that use class-agnostic one-stage detectors as the proposal network. Probabilistic two-st

Xingyi Zhou 1.1k Jan 03, 2023
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020
A simple Rock-Paper-Scissors game using CV in python

ML18_Rock-Paper-Scissors-using-CV A simple Rock-Paper-Scissors game using CV in python For IITISOC-21 Rules and procedure to play the interactive game

Anirudha Bhagwat 3 Aug 08, 2021
Multi-view 3D reconstruction using neural rendering. Unofficial implementation of UNISURF, VolSDF, NeuS and more.

Volume rendering + 3D implicit surface Showcase What? previous: surface rendering; now: volume rendering previous: NeRF's volume density; now: implici

Jianfei Guo 682 Jan 04, 2023