Jittor 64*64 implementation of StyleGAN

Overview

StyleGanJittor (Tsinghua university computer graphics course)

Overview

Jittor 64*64 implementation of StyleGAN (Tsinghua university computer graphics course) This project is a repetition of StyleGAN based on python 3.8 + Jittor(计图) and The open source StyleGAN-Pytorch project. I train the model on the color_symbol_7k dataset for 40000 iterations. The model can generate 64×64 symbolic images.

StyleGAN is a generative adversarial network for image generation proposed by NVIDIA in 2018. According to the paper, the generator improves the state-of-the-art in terms of traditional distribution quality metrics, leads to demonstrably better interpolation properties, and also better disentangles the latent factors of variation. The main improvement of this network model over previous models is the structure of the generator, including the addition of an eight-layer Mapping Network, the use of the AdaIn module, and the introduction of image randomness - these structures allow the generator to The overall features of the image are decoupled from the local features to synthesize images with better effects; at the same time, the network also has better latent space interpolation effects.

(Karras T, Laine S, Aila T. A style-based generator architecture for generative adversarial networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 4401-4410.)

The training results are shown in Video1trainingResult.avi, Video2GenerationResult1.avi, and Video3GenerationResul2t.avi generated by the trained model.

The Checkpoint folder is the trained StyleGAN model, because it takes up a lot of storage space, the models have been deleted.The data folder is the color_symbol_7k dataset folder. The dataset is processed by the prepare_data file to obtain the LMDB database for accelerated training, and the database is stored in the mdb folder.The sample folder is the folder where the images are generated during the model training process, which can be used to traverse the training process. The generateSample folder is the sample image generated by calling StyleGenerator after the model training is completed.

The MultiResolutionDataset method for reading the LMDB database is defined in dataset.py, the Jittor model reproduced by Jittor is defined in model.py, train.py is used for the model training script, and VideoWrite.py is used to convert the generated image. output for video.

Environment and execution instructions

Project environment dependencies include jittor, ldbm, PIL, argparse, tqdm and some common python libraries.

First you need to unzip the dataset in the data folder. The model can be trained by the script in the terminal of the project environment python train.py --mixing "./mdb/color_symbol_7k_mdb"

Images can be generated based on the trained model and compared for their differences by the script python generate.py --size 64 --n_row 3 --n_col 5 --path './checkpoint/040000.model'

You can adjust the model training parameters by referring to the code in the args section of train.py and generate.py.

Details

The first is the data set preparation, using the LMDB database to accelerate the training. For model construction, refer to the model structure shown in the following figure in the original text, and the recurring Suri used in Pytorch open source version 1. Using the model-dependent framework shown in the second figure below, the original model is split into EqualConv2d, EqualLinear, StyleConvBlock , Convblock and other sub-parts are implemented, and finally built into a complete StyleGenerator and Discriminator.

image

image

In the model building and training part, follow the tutorial provided by the teaching assistant on the official website to help convert the torch method to the jittor method, and explore some other means to implement it yourself. Jittor's documentation is relatively incomplete, and some methods are different from Pytorch. In this case, I use a lower-level method for implementation.

For example: jt.sqrt(out.var(0, unbiased=False) + 1e-8) is used in the Discrimination part of the model to solve the variance of the given dimension of the tensor, and there is no corresponding var() in the Jittor framework method, so I use ((out-out.mean(0)).sqr().sum(0)+1e-8).sqrt() to implement the same function.

Results

Limited by the hardware, the model training time is long, and I don't have enough time to fine-tune various parameters, optimizers and various parameters, so the results obtained by training on Jittor are not as good as when I use the same model framework to train on Pytorch The result is good, but the progressive training process can be clearly seen from the video, and the generated symbols are gradually clear, and the results are gradually getting better.

Figures below are sample results obtained by training on Jittor and Pytorch respectively. For details, please refer to the video files in the folder. The training results of the same model and code on Pytorch can be found in the sample_torch folder.

figures by Jittor figures by Pytorch

To be continued

Owner
Song Shengyu
Song Shengyu
Keras attention models including botnet,CoaT,CoAtNet,CMT,cotnet,halonet,resnest,resnext,resnetd,volo,mlp-mixer,resmlp,gmlp,levit

Keras_cv_attention_models Keras_cv_attention_models Usage Basic Usage Layers Model surgery AotNet ResNetD ResNeXt ResNetQ BotNet VOLO ResNeSt HaloNet

319 Dec 28, 2022
Deep Learning for Morphological Profiling

Deep Learning for Morphological Profiling An end-to-end implementation of a ML System for morphological profiling using self-supervised learning to di

Danielh Carranza 0 Jan 20, 2022
Geometric Sensitivity Decomposition

Geometric Sensitivity Decomposition This repo is the official implementation of A Geometric Perspective towards Neural Calibration via Sensitivity Dec

16 Dec 26, 2022
Rafael Project- Classifying rockets to different types using data science algorithms.

Rocket-Classify Rafael Project- Classifying rockets to different types using data science algorithms. In this project we received data base with data

Hadassah Engel 5 Sep 18, 2021
Use of Attention Gates in a Convolutional Neural Network / Medical Image Classification and Segmentation

Attention Gated Networks (Image Classification & Segmentation) Pytorch implementation of attention gates used in U-Net and VGG-16 models. The framewor

Ozan Oktay 1.6k Dec 30, 2022
End-To-End Memory Network using Tensorflow

MemN2N Implementation of End-To-End Memory Networks with sklearn-like interface using Tensorflow. Tasks are from the bAbl dataset. Get Started git clo

Dominique Luna 339 Oct 27, 2022
Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations

TopClus The source code used for Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations, published in WWW 2022. Requ

Yu Meng 63 Dec 18, 2022
Codes of paper "Unseen Object Amodal Instance Segmentation via Hierarchical Occlusion Modeling"

Unseen Object Amodal Instance Segmentation (UOAIS) Seunghyeok Back, Joosoon Lee, Taewon Kim, Sangjun Noh, Raeyoung Kang, Seongho Bak, Kyoobin Lee This

GIST-AILAB 92 Dec 13, 2022
unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier"

SquarePlus (Pytorch implement) unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier" SquarePlus Squareplus is a Softplus-L

SeeFun 3 Dec 29, 2021
Text to image synthesis using thought vectors

Text To Image Synthesis Using Thought Vectors This is an experimental tensorflow implementation of synthesizing images from captions using Skip Though

Paarth Neekhara 2.1k Jan 05, 2023
SphereFace: Deep Hypersphere Embedding for Face Recognition

SphereFace: Deep Hypersphere Embedding for Face Recognition By Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj and Le Song License SphereFa

Weiyang Liu 1.5k Dec 29, 2022
Convenient tool for speeding up the intern/officer review process.

icpc-app-screen Convenient tool for speeding up the intern/officer applicant review process. Eliminates the pain from reading application responses of

1 Oct 30, 2021
Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience

Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience This repository is the official implementation of [https://www.bi

Eulerlab 6 Oct 09, 2022
RepVGG: Making VGG-style ConvNets Great Again

RepVGG: Making VGG-style ConvNets Great Again (PyTorch) This is a super simple ConvNet architecture that achieves over 80% top-1 accuracy on ImageNet

2.8k Jan 04, 2023
Incorporating Transformer and LSTM to Kalman Filter with EM algorithm

Deep learning based state estimation: incorporating Transformer and LSTM to Kalman Filter with EM algorithm Overview Kalman Filter requires the true p

zshicode 57 Dec 27, 2022
Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation

Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation This repository contains code and data f

Zoey Liu 0 Jan 07, 2022
Computational Methods Course at UdeA. Forked and size reduced from:

Computational Methods for Physics & Astronomy Book version at: https://restrepo.github.io/ComputationalMethods by: Sebastian Bustamante 2014/2015 Dieg

Diego Restrepo 11 Sep 10, 2022
Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021)

HAIS Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021) by Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang*. (*) Corresp

Hust Visual Learning Team 145 Jan 05, 2023
Source code for PairNorm (ICLR 2020)

PairNorm Official pytorch source code for PairNorm paper (ICLR 2020) This code requires pytorch_geometric=1.3.2 usage For SGC, we use original PairNo

62 Dec 08, 2022
Original Pytorch Implementation of FLAME: Facial Landmark Heatmap Activated Multimodal Gaze Estimation

FLAME Original Pytorch Implementation of FLAME: Facial Landmark Heatmap Activated Multimodal Gaze Estimation, accepted at the 17th IEEE Internation Co

Neelabh Sinha 19 Dec 17, 2022