Audio augmentations library for PyTorch for audio in the time-domain

Overview

Audio Augmentations

DOI

Audio augmentations library for PyTorch for audio in the time-domain, with support for stochastic data augmentations as used often in self-supervised / contrastive learning.

Usage

We can define several audio augmentations, which will be applied sequentially to a raw audio waveform:

from audio_augmentations import *

audio, sr = torchaudio.load("tests/classical.00002.wav")

num_samples = sr * 5
transforms = [
    RandomResizedCrop(n_samples=num_samples),
    RandomApply([PolarityInversion()], p=0.8),
    RandomApply([Noise(min_snr=0.3, max_snr=0.5)], p=0.3),
    RandomApply([Gain()], p=0.2),
    RandomApply([HighLowPass(sample_rate=sr)], p=0.8),
    RandomApply([Delay(sample_rate=sr)], p=0.5),
    RandomApply([PitchShift(
        n_samples=num_samples,
        sample_rate=sr
    )], p=0.4),
    RandomApply([Reverb(sample_rate=sr)], p=0.3)
]

We can return either one or many versions of the same audio example:

transform = Compose(transforms=transforms)
transformed_audio =  transform(audio)
>> transformed_audio.shape[0] = 1
> transformed_audio.shape[0] = 4 ">
audio = torchaudio.load("testing/classical.00002.wav")
transform = ComposeMany(transforms=transforms, num_augmented_samples=4)
transformed_audio = transform(audio)
>> transformed_audio.shape[0] = 4

Similar to the torchvision.datasets interface, an instance of the Compose or ComposeMany class can be supplied to a torchaudio dataloaders that accept transform=.

Optional

Install WavAugment for reverberation / pitch shifting:

pip install git+https://github.com/facebookresearch/WavAugment

Cite

You can cite this work with the following BibTeX:

@misc{spijkervet_torchaudio_augmentations,
  doi = {10.5281/ZENODO.4748582},
  url = {https://zenodo.org/record/4748582},
  author = {Spijkervet,  Janne},
  title = {Spijkervet/torchaudio-augmentations},
  publisher = {Zenodo},
  year = {2021},
  copyright = {MIT License}
}
Comments
  • Delay augmentation on cuda

    Delay augmentation on cuda

    Hi. Currently the delay augmentation doesn't work on gpu since part of the signal is on cpu. I think making thebeginning tensor same as the audio tensor device should fix it. Thanks. https://github.com/Spijkervet/torchaudio-augmentations/blob/d044f9d020e12032ab9280acf5f34a337e72d212/torchaudio_augmentations/augmentations/delay.py#L31

    opened by sidml 2
  • Correctness unit test would be great

    Correctness unit test would be great

    For some transforms, we can test if the values are actually correct by manually computing the expected value. For example, PolarityInversion could be test with some tiny tensors like [[0.1, 0.5, -1.0]]. Reverse as well. Probably only those two? Still, it'd be better than not having any.

    opened by keunwoochoi 2
  • Default value of `max_snr` in `Noise`

    Default value of `max_snr` in `Noise`

    1.0 of SNR with signal and white noise would be a really heavily corrupted signal. Could we set it to be a little more reasonable value?

    Related; it'd be great if one can hear some examples of the augmented result.

    opened by keunwoochoi 2
  • End-to-end PitchShift transform tests

    End-to-end PitchShift transform tests

    This merge requests adds end-to-end pitch transformation detection with librosa's pYIN pitch detection, to test if the applied transformation yields the expected pitch transposition.

    opened by Spijkervet 0
  • Unittests

    Unittests

    This adds various unittests and fixes to multi-channel input for Reverb, Pitch, Reverse and HighLowPass filter augmentations. It also removes Essentia as a dependency, and instead uses julius for IRR filtering.

    opened by Spijkervet 0
  • import error

    import error

    when i import torchaudio_augmentation

    I got the error

    RuntimeError : torchaudio.sox_effects.sox_effects.effect_names requires module: torchaudio._torchaudio

    how can I deal with it?

    opened by EavnJeong 0
  • Snr db

    Snr db

    Hi, Thanks for the interesting work. Allow me to suggest this change for two reasons:

    • Expressing SNR in dB cancels the doubt there might be between power SNR and RMS SNR.
    • When sampling an SNR, it feels to me like it makes more sense to uniformly sample from the log scale of the dB than on the linear range. This way you ensure that your low SNR have as much chances as your high SNR.

    I hope it makes sens. I'd be glad to discuss further about that.

    opened by wesbz 0
  • sanity check for duration

    sanity check for duration

    In transforms where the duration may change, if the input audio is shorter than n_samples, the error message is not intuitive. I forgot but in some case, the multiprocessing-based dataloader silently died. Maybe it's worth checking it somewhere?

    opened by keunwoochoi 0
  • Shapes are still a bit confusing

    Shapes are still a bit confusing

    From ComposeMany.__call__(), is x also a ch, time shape 2-dim tensor? And I'm sure what would be the expected behavior by this function, especially the shape of the output.

    opened by keunwoochoi 3
Releases(v0.2.3)
Owner
Janne
Music producer, machine learning in MIR & occasional ethical hacker
Janne
A rofi-blocks script that searches youtube and plays the selected audio on mpv.

rofi-ytm A rofi-blocks script that searches youtube and plays the selected audio on mpv. To use the script, run the following command rofi -modi block

Cliford 26 Dec 21, 2022
digital audio workstation, instrument and effect plugins, wave editor

digital audio workstation, instrument and effect plugins, wave editor

306 Jan 05, 2023
Official implementation of A cappella: Audio-visual Singing VoiceSeparation, from BMVC21

Y-Net Official implementation of A cappella: Audio-visual Singing VoiceSeparation, British Machine Vision Conference 2021 Project page: ipcv.github.io

Juan F. Montesinos 12 Oct 22, 2022
Okaeri-Music is a telegram music bot project, allow you to play music on voice chat group telegram.

Okaeri-Music is a telegram bot project that's allow you to play music on telegram voice chat group

Wahyusaputra 1 Dec 22, 2021
Speech recognition module for Python, supporting several engines and APIs, online and offline.

SpeechRecognition Library for performing speech recognition, with support for several engines and APIs, online and offline. Speech recognition engine/

Anthony Zhang 6.7k Jan 08, 2023
A python wrapper for REAPER

pyreaper A python wrapper for REAPER (Robust Epoch And Pitch EstimatoR) Installation pip install pyreaper Demonstration notebnook http://nbviewer.jupy

Ryuichi Yamamoto 56 Dec 27, 2022
A python program for visualizing MIDI files, and displaying them in a spiral layout

SpiralMusic_python A python program for visualizing MIDI files, and displaying them in a spiral layout For a hardware version using Teensy & LED displ

Gavin 6 Nov 23, 2022
Python CD-DA ripper preferring accuracy over speed

Whipper Whipper is a Python 3 (3.6+) CD-DA ripper based on the morituri project (CDDA ripper for *nix systems aiming for accuracy over speed). It star

671 Jan 04, 2023
kapre: Keras Audio Preprocessors

Kapre Keras Audio Preprocessors - compute STFT, ISTFT, Melspectrogram, and others on GPU real-time. Tested on Python 3.6 and 3.7 Why Kapre? vs. Pre-co

Keunwoo Choi 867 Dec 29, 2022
Audio2midi - Automatic Audio-to-symbolic Arrangement

Automatic Audio-to-symbolic Arrangement This is the repository of the project "A

Ziyu Wang 24 Dec 05, 2022
MelGAN test on audio decoding

Official repository for the paper MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis The original work URL: https://github.com

Jurio 1 Apr 29, 2022
TONet: Tone-Octave Network for Singing Melody Extraction from Polyphonic Music

TONet Introduction The official implementation of "TONet: Tone-Octave Network for Singing Melody Extraction from Polyphonic Music", in ICASSP 2022 We

Knut(Ke) Chen 29 Dec 01, 2022
A Quick Music Player Made Fully in Python

Quick Music Player Made Fully In Python. Pure Python, cross platform, single function module with no dependencies for playing sounds. Installation & S

1 Dec 24, 2021
live coding in python + supercollider

live coding in python + supercollider

Zack 6 Feb 06, 2022
Algorithmic and AI MIDI Drums Generator Implementation

Algorithmic and AI MIDI Drums Generator Implementation

Tegridy Code 8 Dec 30, 2022
A music player designed for a University Project.

A music player designed for a University Project. Very flexibe and easy to use, a real life working application with user friendly controls. Hope u enjoy!!

Aditya Johorey 1 Nov 19, 2021
An audio-solving python funcaptcha solving module

funcapsolver funcapsolver is a funcaptcha audio-solving module, which allows captchas to be interacted with and solved with the use of google's speech

Acier 8 Nov 21, 2022
Audio Retrieval with Natural Language Queries: A Benchmark Study

Audio Retrieval with Natural Language Queries: A Benchmark Study Paper | Project page | Text-to-audio search demo This repository is the implementatio

21 Oct 31, 2022
Audio features extraction

Yaafe Yet Another Audio Feature Extractor Build status Branch master : Branch dev : Anaconda : Install Conda Yaafe can be easily install with conda. T

Yaafe 231 Dec 26, 2022
Klangbecken: The RaBe Endless Music Player

Klangbecken Klangbecken is the minimalistic endless music player for Radio Bern RaBe based on liquidsoap. It supports configurable and editable playli

Radio Bern RaBe 8 Oct 09, 2021