PantheonRL is a package for training and testing multi-agent reinforcement learning environments.

Overview

PantheonRL

PantheonRL is a package for training and testing multi-agent reinforcement learning environments. The goal of PantheonRL is to provide a modular and extensible framework for training agent policies, fine-tuning agent policies, ad-hoc pairing of agents, and more. PantheonRL also provides a web user interface suitable for lightweight experimentation and prototyping.

PantheonRL is built on top of StableBaselines3 (SB3), allowing direct access to many of SB3's standard RL training algorithms such as PPO. PantheonRL currently follows a decentralized training paradigm -- each agent is equipped with its own replay buffer and update algorithm. The agents objects are designed to be easily manipulable. They can be saved, loaded and plugged into different training procedures such as self-play, ad-hoc / cross-play, round-robin training, or finetuning.

This package will be presented as a demo at the AAAI-22 Demonstrations Program.

Demo Paper

Demo Video

"PantheonRL: A MARL Library for Dynamic Training Interactions"
Bidipta Sarkar*, Aditi Talati*, Andy Shih*, Dorsa Sadigh
In Proceedings of the 36th AAAI Conference on Artificial Intelligence (Demo Track), 2022

@inproceedings{sarkar2021pantheonRL,
  title={PantheonRL: A MARL Library for Dynamic Training Interactions},
  author={Sarkar, Bidipta and Talati, Aditi and Shih, Andy and Sadigh Dorsa},
  booktitle = {Proceedings of the 36th AAAI Conference on Artificial Intelligence (Demo Track)},
  year={2022}
}

Installation

# Optionally create conda environments
conda create -n PantheonRL python=3.7
conda activate PantheonRL

# Clone and install PantheonRL
git clone https://github.com/Stanford-ILIAD/PantheonRL.git
cd PantheonRL
pip install -e .

Overcooked Installation

# Optionally install Overcooked environment
git submodule update --init --recursive
pip install -e overcookedgym/human_aware_rl/overcooked_ai

PettingZoo Installation

# Optionally install PettingZoo environments
pip install pettingzoo

# to install a group of pettingzoo environments
pip install "pettingzoo[classic]"

Command Line Invocation

Example

python3 trainer.py LiarsDice-v0 PPO PPO --seed 10 --preset 1
# requires Overcooked installation (see above instructions)
python3 trainer.py OvercookedMultiEnv-v0 PPO PPO --env-config '{"layout_name":"simple"}' --seed 10 --preset 1

For examples on round-robin training followed by partner adaptation, check out these instructions.

For more examples, check out the examples/ directory.

Web User Interface

The first time the web interface is being run in a new location, the database must be initialized. After that, the init-db command should not be called again, because this will clear all user account data.

Set environment variables and (re)inititalize the database

export FLASK_APP=website
export FLASK_ENV=development
flask init-db

Start the web user interface. Make sure that ports 5000 and 5001 (used for Tensorboard) are not taken.

flask run --host=0.0.0.0 --port=5000


Agent selection screen. Users can customize the ego and partner agents.


Training screen. Users can view basic information, or spawn a Tensorboard tab for full monitoring.

Features

General Features PantheonRL
Documentation ✔️
Web user interface ✔️
Built on top of SB3 ✔️
Supports PettingZoo Envs ✔️
Environment Features PantheonRL
Frame stacking (recurrence) ✔️
Simultaneous multiagent envs ✔️
Turn-based multiagent envs ✔️
2-player envs ✔️
N-player envs ✔️
Custom environments ✔️
Training Features PantheonRL
Self-play ✔️
Ad-hoc / cross-play ✔️
Round-robin training ✔️
Finetune / adapt to new partners ✔️
Custom policies ✔️

Current Environments

Name Environment Type Reward Type Players Visualization
Rock Paper Scissors SimultaneousEnv Competitive 2
Liar's Dice TurnBasedEnv Competitive 2
Block World [1] TurnBasedEnv Cooperative 2 ✔️
Overcooked [2] SimultaneousEnv Cooperative 2 ✔️
PettingZoo [3] Mixed Mixed N ✔️

[1] Adapted from the block construction task from https://github.com/cogtoolslab/compositional-abstractions

[2] Adapted from the Human_Aware_Rl / Overcooked AI package from https://github.com/HumanCompatibleAI/human_aware_rl

[3] PettingZoo environments from https://github.com/Farama-Foundation/PettingZoo

Owner
Stanford Intelligent and Interactive Autonomous Systems Group
Stanford Intelligent and Interactive Autonomous Systems Group
Stanford Intelligent and Interactive Autonomous Systems Group
Open-World Entity Segmentation

Open-World Entity Segmentation Project Website Lu Qi*, Jason Kuen*, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia This projec

DV Lab 410 Jan 03, 2023
Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network

Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network This is the official implementation of

azad 2 Jul 09, 2022
Collect super-resolution related papers, data, repositories

Collect super-resolution related papers, data, repositories

WangChaofeng 1.7k Jan 03, 2023
Controlling the MicriSpotAI robot from scratch

Abstract: The SpotMicroAI project is designed to be a low cost, easily built quadruped robot. The design is roughly based off of Boston Dynamics quadr

Florian Wilk 405 Jan 05, 2023
GluonMM is a library of transformer models for computer vision and multi-modality research

GluonMM is a library of transformer models for computer vision and multi-modality research. It contains reference implementations of widely adopted baseline models and also research work from Amazon

42 Dec 02, 2022
Tutorial materials for Part of NSU Intro to Deep Learning with PyTorch.

Intro to Deep Learning Materials are part of North South University (NSU) Intro to Deep Learning with PyTorch workshop series. (Slides) Related materi

Hasib Zunair 9 Jun 08, 2022
Repo for CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning

CReST in Tensorflow 2 Code for the paper: "CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning" by Chen Wei, Ki

Google Research 75 Nov 01, 2022
Tightness-aware Evaluation Protocol for Scene Text Detection

TIoU-metric Release on 27/03/2019. This repository is built on the ICDAR 2015 evaluation code. If you propose a better metric and require further eval

Yuliang Liu 206 Nov 18, 2022
PyTorch implementation of Algorithm 1 of "On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models"

Code for On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models This repository will reproduce the main results from our pape

Mitch Hill 32 Nov 25, 2022
Code and data for paper "Deep Photo Style Transfer"

deep-photo-styletransfer Code and data for paper "Deep Photo Style Transfer" Disclaimer This software is published for academic and non-commercial use

Fujun Luan 9.9k Dec 29, 2022
Unofficial implementation of "TTNet: Real-time temporal and spatial video analysis of table tennis" (CVPR 2020)

TTNet-Pytorch The implementation for the paper "TTNet: Real-time temporal and spatial video analysis of table tennis" An introduction of the project c

Nguyen Mau Dung 438 Dec 29, 2022
This repo provides the base code for pytorch-lightning and weight and biases simultaneous integration.

Write your model faster with pytorch-lightning-wadb-code-backbone This repository provides the base code for pytorch-lightning and weight and biases s

9 Mar 29, 2022
My usage of Real-ESRGAN to upscale anime, some test and results in the test_img folder

anime upscaler My usage of Real-ESRGAN to upscale anime, I hope to use this on a proper GPU cuz doing this on CPU is completely shit 😂 , I even tried

Shangar Muhunthan 29 Jan 07, 2023
TensorFlow GNN is a library to build Graph Neural Networks on the TensorFlow platform.

TensorFlow GNN This is an early (alpha) release to get community feedback. It's under active development and we may break API compatibility in the fut

889 Dec 30, 2022
MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions Project Page | Paper If you find our work useful for your research, please con

96 Jan 04, 2023
MLSpace: Hassle-free machine learning & deep learning development

MLSpace: Hassle-free machine learning & deep learning development

abhishek thakur 293 Jan 03, 2023
Object detection and instance segmentation toolkit based on PaddlePaddle.

Object detection and instance segmentation toolkit based on PaddlePaddle.

9.3k Jan 02, 2023
Lane assist for ETS2, built with the ultra-fast-lane-detection model.

Euro-Truck-Simulator-2-Lane-Assist Lane assist for ETS2, built with the ultra-fast-lane-detection model. This project was made possible by the amazing

36 Jan 05, 2023
Official repository of the AAAI'2022 paper "Contrast and Generation Make BART a Good Dialogue Emotion Recognizer"

CoG-BART Contrast and Generation Make BART a Good Dialogue Emotion Recognizer Quick Start: To run the model on test sets of four datasets, Download th

39 Dec 24, 2022
AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning

AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning AutoPentest-DRL is an automated penetration testing framework based o

Cyber Range Organization and Design Chair 217 Jan 01, 2023