The Noise Contrastive Estimation for softmax output written in Pytorch

Overview

An NCE implementation in pytorch

About NCE

Noise Contrastive Estimation (NCE) is an approximation method that is used to work around the huge computational cost of large softmax layer. The basic idea is to convert the prediction problem into classification problem at training stage. It has been proved that these two criterions converges to the same minimal point as long as noise distribution is close enough to real one.

NCE bridges the gap between generative models and discriminative models, rather than simply speedup the softmax layer. With NCE, you can turn almost anything into posterior with less effort (I think).

Refs:

NCE:

http://www.cs.helsinki.fi/u/ahyvarin/papers/Gutmann10AISTATS.pdf

NCE on rnnlm:

https://pdfs.semanticscholar.org/144e/357b1339c27cce7a1e69f0899c21d8140c1f.pdf

Comparison with other methods

A review of softmax speedup methods:

http://ruder.io/word-embeddings-softmax/

NCE vs. IS (Importance Sampling): Nce is a binary classification while IS is sort of multi-class classification problem.

http://demo.clab.cs.cmu.edu/cdyer/nce_notes.pdf

NCE vs. GAN (Generative Adversarial Network):

https://arxiv.org/abs/1412.6515

On improving NCE

Sampling methods

In NCE, unigram distribution is usually used to approximate the noise distribution because it's fast to sample from. Sampling from a unigram is equal to multinomial sampling, which is of complexity $O(\log(N))$ via binary search tree. The cost of sampling becomes significant when noise ratio increases.

Since the unigram distribution can be obtained before training and remains unchanged across training, some works are proposed to make use of this property to speedup the sampling procedure. Alias method is one of them.

diagram of constructing auxiliary data structure

By constructing data structures, alias method can reduce the sampling complexity from $O(log(N))$ to $O(1)$, and it's easy to parallelize.

Refs:

alias method:

https://hips.seas.harvard.edu/blog/2013/03/03/the-alias-method-efficient-sampling-with-many-discrete-outcomes/

Generic NCE (full-NCE)

Conventional NCE only perform the contrasting on linear(softmax) layer, that is, given an input of a linear layer, the model outputs are $p(noise|input)$ and $p(target|input)$. In fact NCE can be applied to more general situations where models are capable to output likelihood values for both real data and noise data.

In this code base, I use a variant of generic NCE named full-NCE (f-NCE) to clarify. Unlike normal NCE, f-NCE samples the noises at input embedding.

Refs:

whole sentence language model by IBM (ICASSP2018)

Bi-LSTM language model by speechlab,SJTU (ICSLP2016?)

Batched NCE

Conventional NCE requires different noise samples per data token. Such computational pattern is not fully GPU-efficient because it needs batched matrix multiplication. A trick is to share the noise samples across the whole mini-batch, thus sparse batched matrix multiplication is converted to more efficient dense matrix multiplication. The batched NCE is already supported by Tensorflow.

A more aggressive approach is to called self contrasting (named by myself). Instead of sampling from noise distribution, the noises are simply the other training tokens the within the same mini-batch.

Ref:

batched NCE

https://arxiv.org/pdf/1708.05997.pdf

self contrasting:

https://www.isi.edu/natural-language/mt/simple-fast-noise.pdf

Run the word language model example

There's an example illustrating how to use the NCE module in example folder. This example is forked from the pytorch/examples repo.

Requirements

Please run pip install -r requirements first to see if you have the required python lib.

  • tqdm is used for process bar during training
  • dill is a more flexible replacement for pickle

NCE related Arguments

  • --nce: whether to use NCE as approximation
  • --noise-ratio <50>: numbers of noise samples per batch, the noise is shared among the tokens in a single batch, for training speed.
  • --norm-term <9>: the constant normalization term Ln(z)
  • --index-module <linear>: index module to use for NCE module (currently and available, does not support PPL calculating )
  • --train: train or just evaluation existing model
  • --vocab <None>: use vocabulary file if specified, otherwise use the words in train.txt
  • --loss [full, nce, sampled, mix]: choose one of the loss type for training, the loss is converted to full for PPL evaluation automatically.

Examples

Run NCE criterion with linear module:

python main.py --cuda --noise-ratio 10 --norm-term 9 --nce --train

Run NCE criterion with gru module:

python main.py --cuda --noise-ratio 10 --norm-term 9 --nce --train --index-module gru

Run conventional CE criterion:

python main.py --cuda --train

A small benchmark in swbd+fisher dataset

It's a performance showcase. The dataset is not bundled in this repo however. The model is trained on concatenated sentences,but the hidden states are not passed across batches. An <s> is inserted between sentences. The model is evaluated on <s> padded sentences separately.

Generally a model trained on concatenated sentences performs slightly worse than the one trained on separate sentences. But we saves 50% of training time by reducing the sentence padding operation.

dataset statistics

  • training samples: 2200000 sentences, 22403872 words
  • built vocabulary size: ~30K

testbed

  • 1080 Ti
  • i7 7700K
  • pytorch-0.4.0
  • cuda-8.0
  • cudnn-6.0.1

how to run:

python main.py --train --batch-size 96 --cuda --loss nce --noise-ratio 500 --nhid 300 \
  --emsize 300 --log-interval 1000 --nlayers 1 --dropout 0 --weight-decay 1e-8 \
  --data data/swb --min-freq 3 --lr 2 --save nce-500-swb --concat

Running time

  • crossentropy: 6.5 mins/epoch (56K tokens/sec)
  • nce: 2 mins/epoch (187K tokens/sec)

performance

The rescore is performed on swbd 50-best, thanks to HexLee.

training loss type evaluation type PPL WER
3gram normed ?? 19.4
CE(no concat) normed(full) 53 13.1
CE normed(full) 55 13.3
NCE unnormed(NCE) invalid 13.4
NCE normed(full) 55 13.4
importance sample normed(full) 55 13.4
importance sample sampled(500) invalid 19.0(worse than w/o rescore)

File structure

  • example/log/: some log files of this scripts
  • nce/: the NCE module wrapper
    • nce/nce_loss.py: the NCE loss
    • nce/alias_multinomial.py: alias method sampling
    • nce/index_linear.py: an index module used by NCE, as a replacement for normal Linear module
    • nce/index_gru.py: an index module used by NCE, as a replacement for the whole language model module
  • sample.py: a simple script for NCE linear.
  • example: a word langauge model sample to use NCE as loss.
    • example/vocab.py: a wrapper for vocabulary object
    • example/model.py: the wrapper of all nn.Modules.
    • example/generic_model.py: the model wrapper for index_gru NCE module
    • example/main.py: entry point
    • example/utils.py: some util functions for better code structure

Modified README from Pytorch/examples

This example trains a multi-layer LSTM on a language modeling task. By default, the training script uses the PTB dataset, provided.

python main.py --train --cuda --epochs 6        # Train a LSTM on PTB with CUDA

The model will automatically use the cuDNN backend if run on CUDA with cuDNN installed.

During training, if a keyboard interrupt (Ctrl-C) is received, training is stopped and the current model is evaluated against the test dataset.

The main.py script accepts the following arguments:

optional arguments:
  -h, --help         show this help message and exit
  --data DATA        location of the data corpus
  --emsize EMSIZE    size of word embeddings
  --nhid NHID        humber of hidden units per layer
  --nlayers NLAYERS  number of layers
  --lr LR            initial learning rate
  --lr-decay         learning rate decay when no progress is observed on validation set
  --weight-decay     weight decay(L2 normalization)
  --clip CLIP        gradient clipping
  --epochs EPOCHS    upper epoch limit
  --batch-size N     batch size
  --dropout DROPOUT  dropout applied to layers (0 = no dropout)
  --seed SEED        random seed
  --cuda             use CUDA
  --log-interval N   report interval
  --save SAVE        path to save the final model
  --bptt             max length of truncated bptt
  --concat           use concatenated sentence instead of individual sentence

CHANGELOG

  • 2019.09.09: Improve numeric stability by directly calculation on logits
Comments
  • truncated bptt without padding?

    truncated bptt without padding?

    Hi,

    Thanks for the great example. I noticed that you pad sentences to the max length per mini-batch, which is a bit different from the truncated bptt approach of the original word_language_model without NCE on pytorch. I wonder if you have compared the two approach and investigated if it makes a difference in terms of the final ppl?

    I'm also interested to know how much better this model can be on the ptb dataset. I'm also reading the torch blog post on NCE

    opened by eric-haibin-lin 2
  • Error in NCE expression?

    Error in NCE expression?

    In line 227 of nce_loss.py: logit_true = logit_model - logit_noise - math.log(self.noise_ratio), but this is not the same as the log of line 223:# p_true = logit_model.exp() / (logit_model.exp() + self.noise_ratio * logit_noise.exp()) where is the logit_model in the denominator? shouldn't be logit_true = logit_model - log( logit_model.exp() + self.noise_ratio * logit_noise.exp())?

    opened by bczhu 1
  • why the labels in sampled_softmax_loss func are all zero?

    why the labels in sampled_softmax_loss func are all zero?

    I read the code in nce_loss.py:

        def sampled_softmax_loss(self, logit_target_in_model, logit_noise_in_model, logit_noise_in_noise, logit_target_in_noise):
            """Compute the sampled softmax loss based on the tensorflow's impl"""
            logits = torch.cat([logit_target_in_model.unsqueeze(2), logit_noise_in_model], dim=2)
            q_logits = torch.cat([logit_target_in_noise.unsqueeze(2), logit_noise_in_noise], dim=2)
            # subtract Q for correction of biased sampling
            logits = logits - q_logits
            labels = torch.zeros_like(logits.narrow(2, 0, 1)).squeeze(2).long()
            loss = self.ce(
                logits.view(-1, logits.size(-1)),
                labels.view(-1),
            ).view_as(labels)
    
            return loss
    

    The labels are created by 'torch.zeros_like' function, so they are all zeros. Is this a bug? Because the target label should be one?

    opened by universewill 1
  • Why the nec_linear output loss while output prob for testing?

    Why the nec_linear output loss while output prob for testing?

    i don't understand the code below in sample.py:

    # training mode
    loss = nce_linear(target, input).mean()
    print(loss.item())
    
    # evaluation mode for fast probability computation
    nce_linear.eval()
    prob = nce_linear(target, input).mean()
    print(prob.item())
    

    Besides, why need target input parameter for inference?

    opened by universewill 1
  • Why need to sub math.log(self.noise_ratio)

    Why need to sub math.log(self.noise_ratio)

    Hi Stonesjtu,

    Thanks for the sharing this NCE implement. I have a question about details. I'd like to know why we need to sub math.log(self.noise_ratio) here: https://github.com/Stonesjtu/Pytorch-NCE/blob/1fae107a92e24e39f25dd69b766806709c70d414/nce/nce_loss.py#L228

    In this tutorial https://www.tensorflow.org/extras/candidate_sampling.pdf, see the Table of Candidate Sampling Algorithms. The input to training loss of NCE is G(x, y) = F(x, y) - log(Q(y|x)).

    Thanks, Bin

    opened by gbuion 1
  • Target Sample can be included in Noise sample

    Target Sample can be included in Noise sample

    Hello. Thanks you for your NCE code in pytorch. It is very helpful. I have some question about noise sampling. In your code, target sample can be sampled as noise sample. And "K" noise sample can be overlap. Is it OK ? I think it is not valid in theory, but practically OK. Do you have any idea for this ?

    opened by adonisues 1
  • main.py does not run 'as is' on penn data

    main.py does not run 'as is' on penn data

    Hi there,

    I'm trying out your code and couldn't run it 'as is' on penn data. I changed the import of data_sms to data in main.py. Maybe you left this from some tryouts on another dataset?

    Thanks for your implementation anyways. F

    opened by francoishernandez 1
  • why squeeze here?

    why squeeze here?

    Hi, I think there is a bug here:

    https://github.com/Stonesjtu/Pytorch-NCE/blob/862afc666445dca4ce9d24a3eb1e073255edb92e/nce.py#L198

    For RNN model which the last layer before softmax has shape [B * N * D] where time steps N>1, I believe the squeeze do not have any effect. Maybe for batch size B=1? If that is the case, squeeze(0) might be a better choice.

    I am using your code for predicting the last state (in other words, N=1). The squeeze here will give a model_loss.shape = (B , 1) and noise_loss.shape = (B,) and then the total loss.shape = (B, B), which should be (B,1) I think.

    opened by chaoqing 3
Releases(neat-nce)
  • neat-nce(Nov 15, 2017)

    • The main file contains the minimal details required. Many helper functions are moved into utils file.
    • Model's API is simplified a lot.

    • Speed issues remain to be solved.
    Source code(tar.gz)
    Source code(zip)
Owner
Kaiyu Shi
Studying Language Model
Kaiyu Shi
A Partition Filter Network for Joint Entity and Relation Extraction EMNLP 2021

EMNLP 2021 - A Partition Filter Network for Joint Entity and Relation Extraction

zhy 127 Jan 04, 2023
This is the pytorch re-implementation of the IterNorm

IterNorm-pytorch Pytorch reimplementation of the IterNorm methods, which is described in the following paper: Iterative Normalization: Beyond Standard

Lei Huang 32 Dec 27, 2022
Multi-Modal Machine Learning toolkit based on PyTorch.

简体中文 | English TorchMM 简介 多模态学习工具包 TorchMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 TorchMM 初始版本 v1.0 特性 丰富的任务场景:工具

njustkmg 1 Jan 05, 2022
PyTorch META-DATASET (Few-shot classification benchmark)

PyTorch META-DATASET (Few-shot classification benchmark) This repo contains a PyTorch implementation of meta-dataset and a unified implementation of s

Malik Boudiaf 39 Oct 31, 2022
This repository contains the code for TACL2021 paper: SummaC: Re-Visiting NLI-based Models for Inconsistency Detection in Summarization

SummaC: Summary Consistency Detection This repository contains the code for TACL2021 paper: SummaC: Re-Visiting NLI-based Models for Inconsistency Det

Philippe Laban 24 Jan 03, 2023
Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours

tsp-streamlit Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours.

4 Nov 05, 2022
Img-process-manual - Utilize Python Numpy and Matplotlib to realize OpenCV baisc image processing function

Img-process-manual - Opencv Library basic graphic processing algorithm coding reproduction based on Numpy and Matplotlib library

Jack_Shaw 2 Dec 12, 2022
Memory-Augmented Model Predictive Control

Memory-Augmented Model Predictive Control This repository hosts the source code for the journal article "Composing MPC with LQR and Neural Networks fo

Fangyu Wu 1 Jun 19, 2022
Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning

advantage-weighted-regression Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning, by Peng et al. (

Omar D. Domingues 1 Dec 02, 2021
Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch.

Faster R-CNN and Mask R-CNN in PyTorch 1.0 maskrcnn-benchmark has been deprecated. Please see detectron2, which includes implementations for all model

Facebook Research 9k Jan 04, 2023
Unoffical reMarkable AddOn for Firefox.

reMarkable for Firefox (Download) This repo converts the offical reMarkable Chrome Extension into a Firefox AddOn published here under the name "Unoff

Jelle Schutter 45 Nov 28, 2022
PyTorch implementation of DirectCLR from paper Understanding Dimensional Collapse in Contrastive Self-supervised Learning

DirectCLR DirectCLR is a simple contrastive learning model for visual representation learning. It does not require a trainable projector as SimCLR. It

Meta Research 49 Dec 21, 2022
Pytorch implementation of Hinton's Dynamic Routing Between Capsules

pytorch-capsule A Pytorch implementation of Hinton's "Dynamic Routing Between Capsules". https://arxiv.org/pdf/1710.09829.pdf Thanks to @naturomics fo

Tim Omernick 625 Oct 27, 2022
Personals scripts using ageitgey/face_recognition

HOW TO USE pip3 install requirements.txt Add some pictures of known people in the folder 'people' : a) Create a folder called by the name of the perso

Antoine Bollengier 1 Jan 06, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

538 Jan 09, 2023
Active and Sample-Efficient Model Evaluation

Active Testing: Sample-Efficient Model Evaluation Hi, good to see you here! 👋 This is code for "Active Testing: Sample-Efficient Model Evaluation". P

Jannik Kossen 19 Oct 30, 2022
Enhancing Knowledge Tracing via Adversarial Training

Enhancing Knowledge Tracing via Adversarial Training This repository contains source code for the paper "Enhancing Knowledge Tracing via Adversarial T

Xiaopeng Guo 14 Oct 24, 2022
Python wrapper of LSODA (solving ODEs) which can be called from within numba functions.

numbalsoda numbalsoda is a python wrapper to the LSODA method in ODEPACK, which is for solving ordinary differential equation initial value problems.

Nick Wogan 52 Jan 09, 2023
CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation

CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener

fastNLP 341 Dec 29, 2022
Stream images from a connected camera over MQTT, view using Streamlit, record to file and sqlite

mqtt-camera-streamer Summary: Publish frames from a connected camera or MJPEG/RTSP stream to an MQTT topic, and view the feed in a browser on another

Robin Cole 183 Dec 16, 2022