Identify the emotion of multiple speakers in an Audio Segment

Overview

PR MIT License made-with-python


Logo

MevonAI - Speech Emotion Recognition

Identify the emotion of multiple speakers in a Audio Segment
Report Bug · Request Feature

Try the Demo Here

Open In Colab

Table of Contents

About The Project

Logo

The main aim of the project is to Identify the emotion of multiple speakers in a call audio as a application for customer satisfaction feedback in call centres.

Built With

Getting Started

Follow the Below Instructions for setting the project up on your local Machine.

Installation

  1. Create a python virtual environment
sudo apt install python3-venv
mkdir mevonAI
cd mevonAI
python3 -m venv mevon-env
source mevon-env/bin/activate
  1. Clone the repo
git clone https://github.com/SuyashMore/MevonAI-Speech-Emotion-Recognition.git
  1. Install Dependencies
cd MevonAI-Speech-Emotion-Recognition/
cd src/
sudo chmod +x setup.sh
./setup.sh

Running the Application

  1. Add audio files in .wav format for analysis in src/input/ folder

  2. Run Speech Emotion Recognition using

python3 speechEmotionRecognition.py
  1. By Default , the application will use the Pretrained Model Available in "src/model/"

  2. Diarized files will be stored in "src/output/" folder

  3. Predicted Emotions will be stored in a separate .csv file in src/ folder

Here's how it works:

Speaker Diarization

  • Speaker diarisation (or diarization) is the process of partitioning an input audio stream into homogeneous segments according to the speaker identity. It can enhance the readability of an automatic speech transcription by structuring the audio stream into speaker turns and, when used together with speaker recognition systems, by providing the speaker’s true identity. It is used to answer the question "who spoke when?" Speaker diarisation is a combination of speaker segmentation and speaker clustering. The first aims at finding speaker change points in an audio stream. The second aims at grouping together speech segments on the basis of speaker characteristics.

Logo

Feature Extraction

  • When we do Speech Recognition tasks, MFCCs is the state-of-the-art feature since it was invented in the 1980s.This shape determines what sound comes out. If we can determine the shape accurately, this should give us an accurate representation of the phoneme being produced. The shape of the vocal tract manifests itself in the envelope of the short time power spectrum, and the job of MFCCs is to accurately represent this envelope.

Logo

The Above Image represents the audio Waveform , the below image shows the converted MFCC Output on which we will Run our CNN Model.

CNN Model

  • Use Convolutional Neural Network to recognize emotion on the MFCCs with the following Architecture
model = Sequential()

#Input Layer
model.add(Conv2D(32, 5,strides=2,padding='same',
                 input_shape=(13,216,1)))
model.add(Activation('relu'))
model.add(BatchNormalization())

#Hidden Layer 1
model.add(Conv2D(64, 5,strides=2,padding='same',))
model.add(Activation('relu'))
model.add(BatchNormalization())

#Hidden Layer 2
model.add(Conv2D(64, 5,strides=2,padding='same',))
model.add(Activation('relu'))
model.add(BatchNormalization())

#Flatten Conv Net
model.add(Flatten())

#Output Layer
model.add(Dense(7))
model.add(Activation('softmax'))

Training the Model

Contributing

Contributions are what make the open source community such an amazing place to be learn, inspire, and create. Any contributions you make are greatly appreciated.

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

License

Distributed under the MIT License. See LICENSE for more information.

Acknowledgements

FAQ

  • How do I do specifically so and so?
    • Create an Issue to this repo , we will respond to the query
Datamoshing with FFmpeg

ffmosher Datamoshing with FFmpeg Drag and drop video onto mosh.bat to create a datamoshed video. To datamosh an image, please ensure the file is in a

18 Sep 11, 2022
Implementation of "Slow-Fast Auditory Streams for Audio Recognition, ICASSP, 2021" in PyTorch

Auditory Slow-Fast This repository implements the model proposed in the paper: Evangelos Kazakos, Arsha Nagrani, Andrew Zisserman, Dima Damen, Slow-Fa

Evangelos Kazakos 57 Dec 07, 2022
DeepMusic is an easy to use Spotify like app to manage and listen to your favorites musics.

DeepMusic is an easy to use Spotify like app to manage and listen to your favorites musics. Technically, this project is an Android Client and its ent

Labrak Yanis 1 Jul 12, 2021
Bot duniya Music Player

Bot duniya Music Player Requirements 📝 FFmpeg (Latest) NodeJS nodesource.com (NodeJS 17+) Python (3.10+) PyTgCalls (Lastest) 2nd Telegram Account (ne

Aman Vishwakarma 16 Oct 21, 2022
Python implementation of the Short Term Objective Intelligibility measure

Python implementation of STOI Implementation of the classical and extended Short Term Objective Intelligibility measures Intelligibility measure which

Pariente Manuel 250 Dec 21, 2022
Python interface to the WebRTC Voice Activity Detector

py-webrtcvad This is a python interface to the WebRTC Voice Activity Detector (VAD). It is compatible with Python 2 and Python 3. A VAD classifies a p

John Wiseman 1.5k Dec 22, 2022
Hide Your Secret Message in any Wave Audio File.

HiddenWave Embedding secret messages in wave audio file What is HiddenWave Hiddenwave is a python based program for simple audio steganography. You ca

TechChip 99 Dec 28, 2022
Stevan KZ 1 Oct 27, 2021
Python audio and music signal processing library

madmom Madmom is an audio signal processing library written in Python with a strong focus on music information retrieval (MIR) tasks. The library is i

Institute of Computational Perception 1k Dec 26, 2022
C++ library for audio and music analysis, description and synthesis, including Python bindings

Essentia Essentia is an open-source C++ library for audio analysis and audio-based music information retrieval released under the Affero GPL license.

Music Technology Group - Universitat Pompeu Fabra 2.3k Jan 03, 2023
無料で使える中品質なテキスト読み上げソフトウェア、VOICEVOXのコア

無料で使える中品質なテキスト読み上げソフトウェア、VOICEVOXのコア

Hiroshiba 0 Aug 29, 2022
A python program to cut longer MP3 files (i.e. recordings of several songs) into the individual tracks.

I'm writing a python script to cut longer MP3 files (i.e. recordings of several songs) into the individual tracks called ReCut. So far there are two

Dönerspiess 1 Oct 27, 2021
A Quick Music Player Made Fully in Python

Quick Music Player Made Fully In Python. Pure Python, cross platform, single function module with no dependencies for playing sounds. Installation & S

1 Dec 24, 2021
Spotipy - Player de música simples em Python

Spotipy Player de música simples em Python, utilizando a biblioteca Pysimplegui para a interface gráfica. Este tocador é bastante simples em si, mas p

Adelino Almeida 4 Feb 28, 2022
Audio augmentations library for PyTorch for audio in the time-domain

Audio augmentations library for PyTorch for audio in the time-domain, with support for stochastic data augmentations as used often in self-supervised / contrastive learning.

Janne 166 Jan 08, 2023
python script for getting mp3 files from yaoutube playlist

mp3-from-youtube-playlist python script for getting mp3 files from youtube playlist. Do your non-tech brown relatives ask you for downloading music fr

Shuhan Mirza 7 Oct 19, 2022
Port Hitsuboku Kumi Chinese CVVC voicebank to deepvocal. / 筆墨クミDeepvocal中文音源

Hitsuboku Kumi (筆墨クミ) is a UTAU virtual singer developed by Cubialpha. This project ports Hitsuboku Kumi Chinese CVVC voicebank to deepvocal. This is the first open-source deepvocal voicebank on Gith

8 Apr 26, 2022
Audio book player for senior visually impaired.

PI Zero W Audio Book Motivation and requirements My dad is practically blind and at 80 years has trouble hearing and operating tiny or more complicate

Andrej Hosna 29 Dec 25, 2022
BART aids transcribe tasks by taking a source audio file and creating automatic repeated loops, allowing transcribers to listen to fragments multiple times

BART (Beyond Audio Replay Technology) aids transcribe tasks by taking a source audio file and creating automatic repeated loops, allowing transcribers to listen to fragments multiple times (with poss

2 Feb 04, 2022
Play any song directly into your group voice chat.

Telegram VCPlayer Bot Play any song directly into your group voice chat. Official Bot : VCPlayerBot | Discussion Group : VoiceChat Music Player Suppor

Shubham Kumar 50 Nov 21, 2022