This is an official implementation for "Self-Supervised Learning with Swin Transformers".

Overview

Self-Supervised Learning with Vision Transformers

By Zhenda Xie*, Yutong Lin*, Zhuliang Yao, Zheng Zhang, Qi Dai, Yue Cao and Han Hu

This repo is the official implementation of "Self-Supervised Learning with Swin Transformers".

A important feature of this codebase is to include Swin Transformer as one of the backbones, such that we can evaluate the transferring performance of the learnt representations on down-stream tasks of object detection and semantic segmentation. This evaluation is usually not included in previous works due to the use of ViT/DeiT, which has not been well tamed for down-stream tasks.

It currently includes code and models for the following tasks:

Self-Supervised Learning and Linear Evaluation: Included in this repo. See get_started.md for a quick start.

Transferring Performance on Object Detection/Instance Segmentation: See Swin Transformer for Object Detection.

Transferring Performance on Semantic Segmentation: See Swin Transformer for Semantic Segmentation.

Highlights

  • Include down-stream evaluation: the first work to evaluate the transferring performance on down-stream tasks for SSL using Transformers
  • Small tricks: significantly less tricks than previous works, such as MoCo v3 and DINO
  • High accuracy on ImageNet-1K linear evaluation: 72.8 vs 72.5 (MoCo v3) vs 72.5 (DINO) using DeiT-S/16 and 300 epoch pre-training

Updates

05/13/2021

  1. Self-Supervised models with DeiT-Small on ImageNet-1K (MoBY-DeiT-Small-300Ep-Pretrained, MoBY-DeiT-Small-300Ep-Linear) are provided.
  2. The supporting code and config for self-supervised learning with DeiT-Small are provided.

05/11/2021

Initial Commits:

  1. Self-Supervised Pre-training models on ImageNet-1K (MoBY-Swin-T-300Ep-Pretrained, MoBY-Swin-T-300Ep-Linear) are provided.
  2. The supported code and models for self-supervised pre-training and ImageNet-1K linear evaluation, COCO object detection and ADE20K semantic segmentation are provided.

Introduction

MoBY: a self-supervised learning approach by combining MoCo v2 and BYOL

MoBY (the name MoBY stands for MoCo v2 with BYOL) is initially described in arxiv, which is a combination of two popular self-supervised learning approaches: MoCo v2 and BYOL. It inherits the momentum design, the key queue, and the contrastive loss used in MoCo v2, and inherits the asymmetric encoders, asymmetric data augmentations and the momentum scheduler in BYOL.

MoBY achieves reasonably high accuracy on ImageNet-1K linear evaluation: 72.8% and 75.3% top-1 accuracy using DeiT and Swin-T, respectively, by 300-epoch training. The performance is on par with recent works of MoCo v3 and DINO which adopt DeiT as the backbone, but with much lighter tricks.

teaser_moby

Swin Transformer as a backbone

Swin Transformer (the name Swin stands for Shifted window) is initially described in arxiv, which capably serves as a general-purpose backbone for computer vision. It achieves strong performance on COCO object detection (58.7 box AP and 51.1 mask AP on test-dev) and ADE20K semantic segmentation (53.5 mIoU on val), surpassing previous models by a large margin.

We involve Swin Transformer as one of backbones to evaluate the transferring performance on down-stream tasks such as object detection. This differentiate this codebase with other approaches studying SSL on Transformer architectures.

ImageNet-1K linear evaluation

Method Architecture Epochs Params FLOPs img/s Top-1 Accuracy Pre-trained Checkpoint Linear Checkpoint
Supervised Swin-T 300 28M 4.5G 755.2 81.2 Here
MoBY Swin-T 100 28M 4.5G 755.2 70.9 TBA
MoBY1 Swin-T 100 28M 4.5G 755.2 72.0 TBA
MoBY DeiT-S 300 22M 4.6G 940.4 72.8 GoogleDrive/GitHub/Baidu GoogleDrive/GitHub/Baidu
MoBY Swin-T 300 28M 4.5G 755.2 75.3 GoogleDrive/GitHub/Baidu GoogleDrive/GitHub/Baidu
  • 1 denotes the result of MoBY which has adopted a trick from MoCo v3 that replace theLayerNorm layers before the MLP blocks by BatchNorm.

  • Access code for baidu is moby.

Transferring to Downstream Tasks

COCO Object Detection (2017 val)

Backbone Method Model Schd. box mAP mask mAP Params FLOPs
Swin-T Mask R-CNN Sup. 1x 43.7 39.8 48M 267G
Swin-T Mask R-CNN MoBY 1x 43.6 39.6 48M 267G
Swin-T Mask R-CNN Sup. 3x 46.0 41.6 48M 267G
Swin-T Mask R-CNN MoBY 3x 46.0 41.7 48M 267G
Swin-T Cascade Mask R-CNN Sup. 1x 48.1 41.7 86M 745G
Swin-T Cascade Mask R-CNN MoBY 1x 48.1 41.5 86M 745G
Swin-T Cascade Mask R-CNN Sup. 3x 50.4 43.7 86M 745G
Swin-T Cascade Mask R-CNN MoBY 3x 50.2 43.5 86M 745G

ADE20K Semantic Segmentation (val)

Backbone Method Model Crop Size Schd. mIoU mIoU (ms+flip) Params FLOPs
Swin-T UPerNet Sup. 512x512 160K 44.51 45.81 60M 945G
Swin-T UPerNet MoBY 512x512 160K 44.06 45.58 60M 945G

Citing MoBY and Swin

MoBY

@article{xie2021moby,
  title={Self-Supervised Learning with Swin Transformers}, 
  author={Zhenda Xie and Yutong Lin and Zhuliang Yao and Zheng Zhang and Qi Dai and Yue Cao and Han Hu},
  journal={arXiv preprint arXiv:2105.04553},
  year={2021}
}

Swin Transformer

@article{liu2021Swin,
  title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows},
  author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining},
  journal={arXiv preprint arXiv:2103.14030},
  year={2021}
}

Getting Started

Owner
Swin Transformer
This organization maintains repositories built on Swin Transformers. The pretrained models locate at https://github.com/microsoft/Swin-Transformer
Swin Transformer
This repository contains all code and data for the Inside Out Visual Place Recognition task

Inside Out Visual Place Recognition This repository contains code and instructions to reproduce the results for the Inside Out Visual Place Recognitio

15 May 21, 2022
A Broad Study on the Transferability of Visual Representations with Contrastive Learning

A Broad Study on the Transferability of Visual Representations with Contrastive Learning This repository contains code for the paper: A Broad Study on

Ashraful Islam 29 Nov 09, 2022
Motion planning algorithms commonly used on autonomous vehicles. (path planning + path tracking)

Overview This repository implemented some common motion planners used on autonomous vehicles, including Hybrid A* Planner Frenet Optimal Trajectory Hi

Huiming Zhou 1k Jan 09, 2023
Code for Boundary-Aware Segmentation Network for Mobile and Web Applications

BASNet Boundary-Aware Segmentation Network for Mobile and Web Applications This repository contain implementation of BASNet in tensorflow/keras. comme

Hamid Ali 8 Nov 24, 2022
Codes for the compilation and visualization examples to the HIF vegetation dataset

High-impedance vegetation fault dataset This repository contains the codes that compile the "Vegetation Conduction Ignition Test Report" data, which a

1 Dec 12, 2021
Epidemiology analysis package

zEpid zEpid is an epidemiology analysis package, providing easy to use tools for epidemiologists coding in Python 3.5+. The purpose of this library is

Paul Zivich 111 Jan 08, 2023
A mini lib that implements several useful functions binding to PyTorch in C++.

Torch-gather A mini library that implements several useful functions binding to PyTorch in C++. What does gather do? Why do we need it? When dealing w

maxwellzh 8 Sep 07, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning

tf-fsvd TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions Cite If you f

Sami Abu-El-Haija 14 Nov 25, 2021
PyTorch implementation of Munchausen Reinforcement Learning based on DQN and SAC. Handles discrete and continuous action spaces

Exploring Munchausen Reinforcement Learning This is the project repository of my team in the "Advanced Deep Learning for Robotics" course at TUM. Our

Mohamed Amine Ketata 10 Mar 10, 2022
An Unsupervised Graph-based Toolbox for Fraud Detection

An Unsupervised Graph-based Toolbox for Fraud Detection Introduction: UGFraud is an unsupervised graph-based fraud detection toolbox that integrates s

SafeGraph 99 Dec 11, 2022
A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model Deployment.

chitra What is chitra? chitra (चित्र) is a multi-functional library for full-stack Deep Learning. It simplifies Model Building, API development, and M

Aniket Maurya 210 Dec 21, 2022
Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer"

TSOD Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer" Usage For training, open train_test, run p

Jinming Su 2 Dec 23, 2021
Python package to generate image embeddings with CLIP without PyTorch/TensorFlow

imgbeddings A Python package to generate embedding vectors from images, using OpenAI's robust CLIP model via Hugging Face transformers. These image em

Max Woolf 81 Jan 04, 2023
AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition.

AnimalAI 3 AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition. It aims to support AI research t

Matthew Crosby 58 Dec 12, 2022
This repo is to present various code demos on how to use our Graph4NLP library.

Deep Learning on Graphs for Natural Language Processing Demo The repository contains code examples for DLG4NLP tutorials at NAACL 2021, SIGIR 2021, KD

Graph4AI 143 Dec 23, 2022
HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep.

HODEmu HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep. and emulates satellite abundance as a function of co

Antonio Ragagnin 1 Oct 13, 2021
Improved Fitness Optimization Landscapes for Sequence Design

ReLSO Improved Fitness Optimization Landscapes for Sequence Design Description Citation How to run Training models Original data source Description In

Krishnaswamy Lab 44 Dec 20, 2022
Pytorch implementation for M^3L

Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-Identification (CVPR 2021) Introduction This is the Py

Yuyang Zhao 45 Dec 26, 2022
Research into Forex price prediction from price history using Deep Sequence Modeling with Stacked LSTMs.

Forex Data Prediction via Recurrent Neural Network Deep Sequence Modeling Research Paper Our research paper can be viewed here Installation Clone the

Alex Taradachuk 2 Aug 07, 2022